在幾何學中,星形多邊形是一種外觀有數個向外凸起的非凸多邊形。目前幾何學上尚未有一個廣泛被接受的星形多邊形定義,目前較常見的定義為存在頂點不和相鄰頂點連接的多邊形[1][2],或者從一般多邊形透過截角或延長邊並使其相交所形成的形狀[3]。目前有被從多個角度進行研究的星形多邊形只有星形正多邊形。數學家布蘭科·格倫鮑姆(英语:Branko Grünbaum)指出了兩種由克卜勒提出的定義:一種是具有自相交稜的星形正多邊形,且自相交的稜不產生新的頂點,另一種是等邊的簡單凹多邊形[5]。
星形多邊形一般有許多向外突出的角,一般依照其向外突出之角的數量命名,如五角星,部分文獻將之稱為一個芒,整體形狀以芒數命名,如五芒星[6]與六芒星[7]。
若一星形多邊形是一個簡單多邊形或邊不相交的多邊形,則該星形多邊形不可能為星形正多邊形,因為若將星形正多邊形的相交邊移除,則其不再正多邊形,但可以形成等邊多邊形。這類等邊多邊形通常由2個落在半徑不同的圓上之頂點交錯連接構成。數學家布蘭科·格倫鮑姆(英语:Branko Grünbaum)在其著作《Tilings and Patterns》中將這類多邊形以符號 | x | {\displaystyle |x|} 表示由星形多邊形 { x } {\displaystyle \{x\}} 移除相交線段後構成的星形多邊形,例如星形多邊形 { n d } {\displaystyle \{{\frac {n}{d}}\}} 移除位於內部的線段後的結果計為 | n d | {\displaystyle |{\frac {n}{d}}|} 或 { n α α --> } {\displaystyle \{n\alpha \}} 表達一個內角 α α --> < 180 ( 1 − − --> 2 n ) {\displaystyle \alpha <180(1-{\frac {2}{n}})} 度的n角星[5]。
星形正多邊形包括五角星和八角星等等,n角星的施萊夫利符號為{n/m},其中m是小於n/2且和n互質的正整數。托馬斯·布拉德華是最早系統性地對星形正多邊形的研究的學者,後來约翰内斯·开普勒也做了類似的研究。[8]