Kristalografska struktura β2-adrenergičkog receptor prikazanog kao zeleni crtež i vezanog parcijalnog inverznog agonista karazolol liganda kao sfere (atom ugljenika = siv, kiseonik = crven, azot = plav). Fosfolipidnidvosloj je prikazan kao plave sfere (glave fosfatnih grupa) i žute linije (lipidni bočni lanci).[1][2]
3D kristalografska struktura β2-adrenergičkog receptora je bila određena (2R4R, 2R4S, 2RH1).[5][1][2]
Mehanizam
Ovaj receptor je direktno vezan sa jednim od njegovih ultimatnih efektora, klasom C L-tip kalcijumskim kanalom CaV1.2. Ovaj receptor-kanal kompleks je spregnut sa GsG proteinom, koji aktivira adenilil ciklazu, katalizujući formaciju cikličnog adenozin monofosfata (cAMP), koji onda aktivira proteinsku kinazu A, i kontra-balansira fosfatazuPP2A. Kompozicija signalnog kompleksa omogućava mehanizam koji proizvodi specifičnu i brzu signalizaciju. Biofizički i molekularni model sa dva stanja je bio predložen da bi se objasnila pH i REDOX senzitivnost ovog i drugih GPCR receptora.[6]
Za beta-2 adrenergički receptor je takođe bilo utvrđeno da se spreže sa Gi. Moguće je da se time stvara mehanizam kojim je respons na ligande visoko lokalizovan unutar ćelija. U kontrastu s tim, Beta-1 adrenergički receptori se sprežu samo sa Gs, i njihova stimulacija rezultuje u difuznijem ćelijskom odzivu.[7] Postoje indikacije da je ovo posredovano cAMP indukovanom PKA fosforilacijom receptora.[8]
^Rasmussen SG, Choi HJ, Rosenbaum DM, Kobilka TS, Thian FS, Edwards PC, Burghammer M, Ratnala VR, Sanishvili R, Fischetti RF, Schertler GF, Weis WI, Kobilka BK (2007). „Crystal structure of the human β2-adrenergic G-protein-coupled receptor”. Nature. 450 (7168): 383—7. PMID17952055. doi:10.1038/nature06325.
^Rubenstein LA, Zauhar RJ, Lanzara RG (2006). „Molecular dynamics of a biophysical model for β2-adrenergic and G protein-coupled receptor activation”. J. Mol. Graph. Model. 25 (4): 396—409. PMID16574446. doi:10.1016/j.jmgm.2006.02.008.
^Zamah AM, Delahunty M, Luttrell LM, Lefkowitz RJ (2002). „Protein kinase A-mediated phosphorylation of the beta 2-adrenergic receptor regulates its coupling to Gs and Gi. Demonstration in a reconstituted system”. J. Biol. Chem. 277 (34): 31249—56. PMID12063255. doi:10.1074/jbc.M202753200.
Taylor DR, Kennedy MA (2002). „Genetic variation of the beta(2)-adrenoceptor: its functional and clinical importance in bronchial asthma.”. American journal of pharmacogenomics : genomics-related research in drug development and clinical practice. 1 (3): 165—74. PMID12083965.
Thibonnier M, Coles P, Thibonnier A, Shoham M (2002). „Molecular pharmacology and modeling of vasopressin receptors.”. Prog. Brain Res. 139: 179—96. PMID12436935. doi:10.1016/S0079-6123(02)39016-2.
Ge D; Huang J; He J; et al. (2005). „beta2-Adrenergic receptor gene variations associated with stage-2 hypertension in northern Han Chinese.”. Ann. Hum. Genet. 69 (Pt 1): 36—44. PMID15638826. doi:10.1046/j.1529-8817.2003.00093.x.
Bucens D, Pain MC (1976). „Influence of hematocrit, blood gas tensions, and pH on pressure-flow relations in the isolated canine lung.”. Circ. Res. 37 (5): 588—96. PMID154.
von Zastrow M, Kobilka BK (1992). „Ligand-regulated internalization and recycling of human beta 2-adrenergic receptors between the plasma membrane and endosomes containing transferrin receptors.”. J. Biol. Chem. 267 (5): 3530—8. PMID1371121.
Gope R; Gope ML; Thorson A; et al. (1992). „Genetic changes at the beta-2-adrenergic receptor locus on chromosome 5 in human colorectal carcinomas.”. Anticancer Res. 11 (6): 2047—50. PMID1663718.
Bouvier M, Guilbault N, Bonin H (1991). „Phorbol-ester-induced phosphorylation of the beta 2-adrenergic receptor decreases its coupling to Gs.”. FEBS Lett. 279 (2): 243—8. PMID1848190. doi:10.1016/0014-5793(91)80159-Z.
Hui KK, Yu JL (1989). „Effects of protein kinase inhibitor, 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine, on beta-2 adrenergic receptor activation and desensitization in intact human lymphocytes.”. J. Pharmacol. Exp. Ther. 249 (2): 492—8. PMID2470898.
O'Dowd BF; Hnatowich M; Caron MG; et al. (1989). „Palmitoylation of the human beta 2-adrenergic receptor. Mutation of Cys341 in the carboxyl tail leads to an uncoupled nonpalmitoylated form of the receptor.”. J. Biol. Chem. 264 (13): 7564—9. PMID2540197.
Bristow MR; Hershberger RE; Port JD; et al. (1989). „Beta 1- and beta 2-adrenergic receptor-mediated adenylate cyclase stimulation in nonfailing and failing human ventricular myocardium.”. Mol. Pharmacol. 35 (3): 295—303. PMID2564629.
Chung FZ; Wang CD; Potter PC; et al. (1988). „Site-directed mutagenesis and continuous expression of human beta-adrenergic receptors. Identification of a conserved aspartate residue involved in agonist binding and receptor activation.”. J. Biol. Chem. 263 (9): 4052—5. PMID2831218.
Yang SD; Fong YL; Benovic JL; et al. (1988). „Dephosphorylation of the beta 2-adrenergic receptor and rhodopsin by latent phosphatase 2.”. J. Biol. Chem. 263 (18): 8856—8. PMID2837466.
Chung FZ; Lentes KU; Gocayne J; et al. (1987). „Cloning and sequence analysis of the human brain beta-adrenergic receptor. Evolutionary relationship to rodent and avian beta-receptors and porcine muscarinic receptors.”. FEBS Lett. 211 (2): 200—6. PMID3026848. doi:10.1016/0014-5793(87)81436-9.
„β2-adrenoceptor”. IUPHAR Database of Receptors and Ion Channels. International Union of Basic and Clinical Pharmacology. Архивирано из оригинала 12. 01. 2015. г.