Он состоит из 12 пересекающихся граней в виде пентаграмм с тремя пентаграммами, сходящимися в каждой вершине.
Он имеет то же самое расположение вершин[англ.], что и правильный додекаэдр, а также является звёздчатой формой (меньшего) додекаэдра. Это единственная звёздчатая форма додекаэдра с таким свойством, за исключением самого додекаэдра. Его двойственный многогранник, большой икосаэдр, связан похожим образом с икосаэдром.
Если срезать треугольные пирамиды, останется икосаэдр.
Если грани не рассматривать как пентаграммы, а рассматривать как набор отдельных треугольников, он топологически связан с триакисикосаэдром, имеет ту же самую связь граней, но грани (равнобедренных) треугольников много длиннее.
Прозрачный большой звёздчатый додекаэдр (вращающийся)
Этот многогранник можно представить как сферическую мозаику с плотностью 7. (Одна сферическая грань в виде пентаграммы прочерчена синей линией и заполнена жёлтым)
× 20 Развёртка большого звёздчатого додекаэдра (геометрия поверхности). Двадцать равнобедренных треугольных пирамид расположены так же, как грани икосаэдра
Процесс усечения, применённый к большому звёздчатому многограннику, даёт серию однородных многогранников. Усечение рёбер до точек (полное усечение) даёт большой икосододекаэдр. Процесс завершается на двойном полном усечении, при котором исходные грани сводятся к точкам, результат — большой икосаэдр.
Усечённыйбольшой звёздчатый многогранник — это вырожденный многогранник, имеющий 20 треугольных граней, оставшихся от усечённых вершин и 12 (скрытых) пятиугольных граней, оставшихся от исходных граней. Последние образуют большой додекаэдр, вписанный в икосаэдр и имеющий с ним общие рёбра.