Гиробифастигиум или двускатный повёрнутый бикупол[1] является 26-м многогранником Джонсона (J26). Его можно построить объединением двух треугольных призм с правильными гранями по соответствующим квадратным граням с поворотом одной призмы на 90º [2]. Это единственное тело Джонсона, которым можно заполнить трёхмерное пространство[3][4].
Название гиробифастигиум происходит от латинского слова fastigium, означающего двускатную крышу [6]. В стандартных соглашениях наименования тел Джонсона би- означает соединение двух тел по их базису, а гиро- означает две половинки, повёрнутые относительно друг друга.
Положение гиробифастигиума в списке тел Джонсона непосредственно перед бикуполом[англ.] объясняется тем, что его можно рассматривать как двуугольный гиробикупол. Подобно тому, как другие правильные куполы имеют чередующиеся квадраты и треугольники, окружающие многоугольник в вершине (треугольник[англ.], квадрат или пятиугольник[англ.]), каждая половина гиробифастигиума состоит из чередующихся квадратов и треугольников, соединённых сверху ребром.
Бипризма Шмитта-Конвея-Данцера (называемая также протоплиткой SCD[7]) является многогранником, топологически эквивалентным гиробифастигиуму, но с параллелограммами и неправильными треугольниками в качестве граней вместо квадратов и правильных треугольников. Подобно гиробифастигиуму, этот многогранник может заполнить пространство, но только апериодически или с винтовой симметрией[англ.], а не с полной группой трёхмерной симметрии. Таким образом, этот многогранник даёт частичное решение трёхмерной задачи одной плитки[8][9].
Бифастигиум (дигональный ортобикупол[англ.]), подобно гиробифастигиуму, образован склеиванием двух равносторонних треугольных призм по боковой квадратной стороне, но без поворота.
Он не является телом Джонсона, поскольку его треугольные грани копланарны (лежат в одной плоскости). Однако существует самодвойственный выпуклый многогранник с неправильными гранями, обладающий той же комбинаторной структурой. Этот многогранник имеет сходство с гиробифастигиумом в том, что они имеют по восемь вершин и восемь граней, с гранями, образующими пояс из четырёх квадратных граней, разделяющих две пары треугольников. Однако в двойственном гиробифастигиуме две пары треугольников повёрнуты относительно друг друга, а в бифастигиуме не повёрнуты.
S. M. Nazrul Alam, Zygmunt J. Haas. Proceedings of the 12th Annual International Conference on Mobile Computing and Networking (MobiCom '06). — New York, NY, USA: ACM, 2006. — P. 346–357. — ISBN 1-59593-286-0. — doi:10.1145/1161089.1161128.
Johannes Kepler. The Six-Cornered Snowflake. — Paul Dry Books, 2010. — ISBN 9781589882850. Сноска 18
David J. Darling. The Universal Book of Mathematics: From Abracadabra to Zeno's Paradoxes. — John Wiley & Sons, 2004. — ISBN 9780471667001.