In mathematics, a Hadamard matrix, named after the French mathematician Jacques Hadamard, is a square matrix whose entries are either +1 or −1 and whose rows are mutually orthogonal. In geometric terms, this means that each pair of rows in a Hadamard matrix represents two perpendicularvectors, while in combinatorial terms, it means that each pair of rows has matching entries in exactly half of their columns and mismatched entries in the remaining columns. It is a consequence of this definition that the corresponding properties hold for columns as well as rows.
The n-dimensional parallelotope spanned by the rows of an n × n Hadamard matrix has the maximum possible n-dimensionalvolume among parallelotopes spanned by vectors whose entries are bounded in absolute value by 1. Equivalently, a Hadamard matrix has maximal determinant among matrices with entries of absolute value less than or equal to 1 and so is an extremal solution of Hadamard's maximal determinant problem.
Let H be a Hadamard matrix of order n. The transpose of H is closely related to its inverse. In fact:
where In is the n × nidentity matrix and HT is the transpose of H. To see that this is true, notice that the rows of H are all orthogonal vectors over the field of real numbers and each have length Dividing H through by this length gives an orthogonal matrix whose transpose is thus its inverse. Multiplying by the length again gives the equality above. As a result,
where det(H) is the determinant of H.
Suppose that M is a complex matrix of order n, whose entries are bounded by |Mij | ≤ 1, for each i, j between 1 and n. Then Hadamard's determinant bound states that
Equality in this bound is attained for a real matrix Mif and only ifM is a Hadamard matrix.
The order of a Hadamard matrix must be 1, 2, or a multiple of 4.[1]
Proof
The proof of the nonexistence of Hadamard matrices with dimensions other than 1, 2, or a multiple of 4 follows:
If , then there is at least one scalar product of 2 rows which has to be 0. The scalar product is a sum of n values each of which is either 1 or −1, therefore the sum is odd for odd n, so n must be even.
If with , and there exists an Hadamard matrix , then it has the property that for any :
Now we define the matrix by setting .
Note that has all 1s in row 0.
We check that is also a Hadamard matrix:
Row 1 and row 2, like all other rows except row 0, must have entries of 1 and entries of −1 each. (*)
Let denote the number of 1s of row 2 beneath 1s in row 1.
Let denote the number of −1s of row 2 beneath 1s in row 1.
Let denote the number of 1s of row 2 beneath −1s in row 1.
Let denote the number of −1s of row 2 beneath −1s in row 1.
Row 2 has to be orthogonal to row 1, so the number of products of entries of the rows resulting in 1, , has to match those resulting in −1, .
Due to (*), we also have , from which we can express and and substitute:
But we have as the number of 1s in row 1 the odd number , contradiction.
Sylvester's construction
Examples of Hadamard matrices were actually first constructed by James Joseph Sylvester in 1867. Let H be a Hadamard matrix of order n. Then the partitioned matrix
is a Hadamard matrix of order 2n. This observation can be applied repeatedly and leads to the following sequence of matrices, also called Walsh matrices.
In this manner, Sylvester constructed Hadamard matrices of order 2k for every non-negative integerk.[2]
Sylvester's matrices have a number of special properties. They are symmetric and, when k ≥ 1 (2k > 1), have trace zero. The elements in the first column and the first row are all positive. The elements in all the other rows and columns are evenly divided between positive and negative. Sylvester matrices are closely connected with Walsh functions.
Alternative construction
If we map the elements of the Hadamard matrix using the group homomorphism, we can describe an alternative construction of Sylvester's Hadamard matrix. First consider the matrix , the matrix whose columns consist of all n-bit numbers arranged in ascending counting order. We may define recursively by
It can be shown by induction that the image of the Hadamard matrix under the above homomorphism is given by
This code is also referred to as a Walsh code. The Hadamard code, by contrast, is constructed from the Hadamard matrix by a slightly different procedure.
Hadamard conjecture
Unsolved problem in mathematics:
Is there a Hadamard matrix of order 4k for every positive integer k?
The most important open question in the theory of Hadamard matrices is one of existence. Specifically, the Hadamard conjecture proposes that a Hadamard matrix of order 4k exists for every positive integer k. The Hadamard conjecture has also been attributed to Paley, although it was considered implicitly by others prior to Paley's work.[3]
A generalization of Sylvester's construction proves that if and are Hadamard matrices of orders n and m respectively, then is a Hadamard matrix of order nm. This result is used to produce Hadamard matrices of higher order once those of smaller orders are known.
Sylvester's 1867 construction yields Hadamard matrices of order 1, 2, 4, 8, 16, 32, etc. Hadamard matrices of orders 12 and 20 were subsequently constructed by Hadamard (in 1893).[4] In 1933, Raymond Paley discovered the Paley construction, which produces a Hadamard matrix of order q + 1 when q is any prime power that is congruent to 3 modulo 4 and that produces a Hadamard matrix of order 2(q + 1) when q is a prime power that is congruent to 1 modulo 4.[5] His method uses finite fields.
The smallest order that cannot be constructed by a combination of Sylvester's and Paley's methods is 92. A Hadamard matrix of this order was found using a computer by Baumert, Golomb, and Hall in 1962 at JPL.[6] They used a construction, due to Williamson,[7] that has yielded many additional orders. Many other methods for constructing Hadamard matrices are now known.
In 2005, Hadi Kharaghani and Behruz Tayfeh-Rezaie published their construction of a Hadamard matrix of order 428.[8] As a result, the smallest order for which no Hadamard matrix is presently known is 668.
By 2014, there were 12 multiples of 4 less than 2000 for which no Hadamard matrix of that order was known.[9] They are:
668, 716, 892, 1132, 1244, 1388, 1436, 1676, 1772, 1916, 1948, and 1964.
Equivalence and uniqueness
Two Hadamard matrices are considered equivalent if one can be obtained from the other by negating rows or columns, or by interchanging rows or columns. Up to equivalence, there is a unique Hadamard matrix of orders 1, 2, 4, 8, and 12. There are 5 inequivalent matrices of order 16, 3 of order 20, 60 of order 24, and 487 of order 28. Millions of inequivalent matrices are known for orders 32, 36, and 40. Using a coarser notion of equivalence that also allows transposition, there are 4 inequivalent matrices of order 16, 3 of order 20, 36 of order 24, and 294 of order 28.[10]
Hadamard matrices are also uniquely recoverable, in the following sense: If an Hadamard matrix of order has entries randomly deleted, then with overwhelming likelihood, one can perfectly recover the original matrix from the damaged one. The algorithm of recovery has the same computational cost as matrix inversion.[11]
Special cases
Many special cases of Hadamard matrices have been investigated in the mathematical literature.
Skew Hadamard matrices
A Hadamard matrix H is skew if A skew Hadamard matrix remains a skew Hadamard matrix after multiplication of any row and its corresponding column by −1. This makes it possible, for example, to normalize a skew Hadamard matrix so that all elements in the first row equal 1.
Reid and Brown in 1972 showed that there exists a doubly regular tournament of order n if and only if there exists a skew Hadamard matrix of order n + 1. In a mathematical tournament of order n, each of n players plays one match against each of the other players, each match resulting in a win for one of the players and a loss for the other. A tournament is regular if each player wins the same number of matches. A regular tournament is doubly regular if the number of opponents beaten by both of two distinct players is the same for all pairs of distinct players. Since each of the n(n − 1)/2 matches played results in a win for one of the players, each player wins (n − 1)/2 matches (and loses the same number). Since each of the (n − 1)/2 players defeated by a given player also loses to (n − 3)/2 other players, the number of player pairs (i, j ) such that j loses both to i and to the given player is (n − 1)(n − 3)/4. The same result should be obtained if the pairs are counted differently: the given player and any of the n − 1 other players together defeat the same number of common opponents. This common number of defeated opponents must therefore be (n − 3)/4. A skew Hadamard matrix is obtained by introducing an additional player who defeats all of the original players and then forming a matrix with rows and columns labeled by players according to the rule that row i, column j contains 1 if i = j or i defeats j and −1 if j defeats i. This correspondence in reverse produces a doubly regular tournament from a skew Hadamard matrix, assuming the skew Hadamard matrix is normalized so that all elements of the first row equal 1.[12]
Regular Hadamard matrices
Regular Hadamard matrices are real Hadamard matrices whose row and column sums are all equal. A necessary condition on the existence of a regular n × n Hadamard matrix is that n be a square number. A circulant matrix is manifestly regular, and therefore a circulant Hadamard matrix would have to be of square order. Moreover, if an n × n circulant Hadamard
matrix existed with n > 1 then n would necessarily have to be of the form 4u 2 with u odd.[13][14]
Circulant Hadamard matrices
The circulant Hadamard matrix conjecture, however, asserts that, apart from the known 1 × 1 and 4 × 4 examples, no such matrices exist. This was verified for all but 26 values of u less than 104.[15]
Generalizations
One basic generalization is a weighing matrix. A weighing matrix is a square matrix in which entries may also be zero and which satisfies for some w, its weight. A weighing matrix with its weight equal to its order is a Hadamard matrix.[16]
Another generalization defines a complex Hadamard matrix to be a matrix in which the entries are complex numbers of unit modulus and which satisfies H H* = n In where H* is the conjugate transpose of H. Complex Hadamard matrices arise in the study of operator algebras and the theory of quantum computation.
Butson-type Hadamard matrices are complex Hadamard matrices in which the entries are taken to be qthroots of unity. The term complex Hadamard matrix has been used by some authors to refer specifically to the case q = 4.
Practical applications
Olivia MFSK – an amateur-radio digital protocol designed to work in difficult (low signal-to-noise ratio plus multipath propagation) conditions on shortwave bands.
Coded aperture spectrometry – an instrument for measuring the spectrum of light. The mask element used in coded aperture spectrometers is often a variant of a Hadamard matrix.
Feedback delay networks – Digital reverberation devices which use Hadamard matrices to blend sample values
^J.J. Sylvester. Thoughts on inverse orthogonal matrices, simultaneous sign successions, and tessellated pavements in two or more colours, with applications to Newton's rule, ornamental tile-work, and the theory of numbers.Philosophical Magazine, 34:461–475, 1867
^Kharaghani, H.; Tayfeh-Rezaie, B. (2005). "A Hadamard matrix of order 428". Journal of Combinatorial Designs. 13 (6): 435–440. doi:10.1002/jcd.20043. S2CID17206302.
^Đoković, Dragomir Ž; Golubitsky, Oleg; Kotsireas, Ilias S. (2014). "Some new orders of Hadamard and Skew-Hadamard matrices". Journal of Combinatorial Designs. 22 (6): 270–277. arXiv:1301.3671. doi:10.1002/jcd.21358. S2CID26598685.
Georgiou, S.; Koukouvinos, C.; Seberry, J. (2003). "Hadamard matrices, orthogonal designs and construction algorithms". Designs 2002: Further computational and constructive design theory. Boston: Kluwer. pp. 133–205. ISBN978-1-4020-7599-5.
Model kereta sapi asal zaman Heian di Jidai Matsuri Jidai Matsuri (時代祭code: ja is deprecated , Festival Zaman) adalah prosesi yang diselenggarakan setahun sekali setiap tanggal 22 Oktober di kota Kyoto, Jepang. Festival ini pertama kali diselenggarakan tahun 1895 untuk memperingati berdirinya kuil Heian Jingū, sekaligus memperingati 1.100 tahun berdirinya ibu kota Heian-kyō (Kyoto).[1] Jidai Matsuri diselenggarakan kuil Heian Jingū, dan merupakan salah satu dari 3 festival te...
Chronologies Bus à la frontière entre l'Allemagne et la France en 1948.Données clés 1945 1946 1947 1948 1949 1950 1951Décennies :1910 1920 1930 1940 1950 1960 1970Siècles :XVIIIe XIXe XXe XXIe XXIIeMillénaires :-Ier Ier IIe IIIe Chronologies géographiques Afrique Afrique du Sud, Algérie, Angola, Bénin, Botswana, Burkina Faso, Burundi, Cameroun, Cap-Vert, République centrafricaine, Comores, République du Congo, Républ...
City in Egypt This article is about the city in Egypt. For other uses, see Alexandria (disambiguation). Metropolis in EgyptAlexandria الإسكندرية (Arabic) Standard Arabic:al-IskandariyyaEgyptian Arabic:Eskenderiyya Αλεξάνδρεια (Greek) Αλεξάνδρεια:AlexandriaΡακώτις:Rhakotis MetropolisView of the WaterfrontCitadel of QaitbayBibliotheca AlexandrinaAbu al-Abbas al-Mursi MosqueStanley BridgePompey's PillarNicknames: Mediterranean's Bride, Pearl of the Med...
Ancient Egyptian temple on display in New York City Temple of DendurCompletion date10 BCEMediumAeolian sandstoneSubjectEgyptian religion and mythologyDimensions4.9 m × 6.4 m × 13 m (16 ft × 21 ft × 43 ft)LocationMetropolitan Museum of Art, New York City, New York, U.S.Accession68.154 The Temple of Dendur (Dendoor in the 19th century) is a Roman Egyptian religious structure originally located in Tuzis (later Dendur), Nub...
Pour les articles homonymes, voir Conches et Gondoire. Conches-sur-Gondoire L'église paroissiale et la mairie. Administration Pays France Région Île-de-France Département Seine-et-Marne Arrondissement Torcy Intercommunalité Communauté d'agglomération Marne et Gondoire Maire Mandat Martine Daguerre 2020-2026 Code postal 77600 Code commune 77124 Démographie Gentilé Conchois Populationmunicipale 1 742 hab. (2021 ) Densité 1 146 hab./km2 Géographie Coordonnées 48�...
烏克蘭總理Прем'єр-міністр України烏克蘭國徽現任杰尼斯·什米加尔自2020年3月4日任命者烏克蘭總統任期總統任命首任維托爾德·福金设立1991年11月后继职位無网站www.kmu.gov.ua/control/en/(英文) 乌克兰 乌克兰政府与政治系列条目 宪法 政府 总统 弗拉基米尔·泽连斯基 總統辦公室 国家安全与国防事务委员会 总统代表(英语:Representatives of the President of Ukraine) 总...
Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Maret 2023. Pembuatan minyak asam dengan mencampur moster, minyak dan cuka Minyak asam atau dalam bahasa prancis disebut sebagai vinaigrette adalah cairan pendamping dibuat dengan mencampurkan minyak dengan asam ringan seperti cuka atau jus lemon (asam sitrat). Camp...
سيزران علم شعار الإحداثيات 53°10′00″N 48°28′00″E / 53.166666666667°N 48.466666666667°E / 53.166666666667; 48.466666666667 تاريخ التأسيس 1683 تقسيم إداري البلد روسيا[3][1][2] خصائص جغرافية المساحة 117 كيلومتر مربع ارتفاع 50 متر عدد السكان عدد السكان 173260 (...
An automated restaurant or robotic restaurant is a restaurant that uses robots to do tasks such as delivering food and drink to the tables and/or cooking the food. History This section needs expansion with: details of technology used, designers, manufacturers, etc. You can help by adding to it. (May 2014) Restaurant automation means the use of a restaurant management system to automate the major operations of a restaurant establishment. When discussing commercial restaurant automation, it...
1849 constitution in Austrian Empire The March Constitution, also called Imposed March Constitution or Stadion Constitution (German: Oktroyierte Märzverfassung or Oktroyierte Stadionverfassung, Hungarian: olmützi alkotmány or oktrojált alkotmány), was a constitution of the Austrian Empire promulgated by Minister of the Interior Count Stadion between 4 March and 7 March 1849. Though declared irrevocable, it was eventually revoked by the New Year's Eve Patent (Silvesterpatent) of Emperor F...
Skyscraper in Rochester, New York Kodak TowerKodak Tower as seen from Morrie Silver WayAlternative namesKodak Office TowerBuilding 7[1]Record heightTallest in Rochester, NY from 1914 to 1968[I]Preceded bySaint Michael's ChurchSurpassed byXerox Tower (1968–present)General informationTypeOfficeLocation343 State StRochester, New YorkCoordinates43°9′39″N 77°37′11″W / 43.16083°N 77.61972°W / 43.16083; -77.61972Current tenantsEastman Kodak CompanyConstr...
ABC/CW affiliate in Rochester, New York For the TV station that signed on as WHAM-TV, see WROC-TV. WHAM-TVRochester, New YorkUnited StatesChannelsDigital: 9 (VHF)Virtual: 13Branding13 WHAM ABC; 13 WHAM NewsCW Rochester (DT2)ProgrammingAffiliations13.1: ABC13.2: The CW13.3: Charge![1]OwnershipOwnerDeerfield Media(Deerfield Media (Rochester) Licensee, LLC)OperatorSinclair Broadcast Group via LMASister stationsWUHFHistoryFirst air dateSeptember 15, 1962; 61 years ago (...
هذه المقالة تحتاج للمزيد من الوصلات للمقالات الأخرى للمساعدة في ترابط مقالات الموسوعة. فضلًا ساعد في تحسين هذه المقالة بإضافة وصلات إلى المقالات المتعلقة بها الموجودة في النص الحالي. (أكتوبر 2022) مياه باطنية عميقة في منطقة الشيبة بصحراء الربع الخالي. عروق الشيبة كثبان رملي�...
Village in Wrexham County Borough, Wales Human settlement in WalesPontfadogRoad into Pontfadog, showing former tramway waiting room (at left) and inn sign (centre)PontfadogLocation within WrexhamOS grid referenceSJ233381CommunityGlyntraianPrincipal areaWrexhamCountryWalesSovereign stateUnited KingdomPost townLLANGOLLENPostcode districtLL20Dialling code01691PoliceNorth WalesFireNorth WalesAmbulanceWelsh UK ParliamentClwyd SouthSenedd Cymru – Welsh Parliamen...
För andra countyn med samma namn, se Clinton County. Clinton County County Land USA Delstat Ohio Huvudort Wilmington Area 1 068 km² (2010)[1] - land 1 058 km² (99%) - vatten 9,3 km² (1%) Folkmängd 42 040 (2010)[2] Befolkningstäthet 40 invånare/km² Grundat 1 mars 1810 Tidszon EST (UTC-5) - sommartid EDT (UTC-4) FIPS-kod 39027 Geonames 4508988 Läge i delstaten Ohio. L�...
This article does not cite any sources. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Hiroden lines and routes – news · newspapers · books · scholar · JSTOR (March 2015) (Learn how and when to remove this message) This is a list of lines and routes on the Hiroshima Electric Railway's railway and streetcar (tram) systems in and around Hiroshima, Japan. Lines Curr...
رقية بنت علي تخطيط أسم رقية نت علي بن أبي طالب معلومات شخصية الميلاد 13 هـالمدينة المنورة الوفاة 45 هـ (32 سنة)المدينة المنورة مكان الدفن مقبرة البقيع الزوج مسلم بن عقيل الأولاد عبد الله الأكبر، علي الأب علي بن أبي طالب الأم الصهباء التغلبية إخوة وأخوات زينب بنت علي، وأ�...