Anti-diagonal matrix

In mathematics, an anti-diagonal matrix is a square matrix where all the entries are zero except those on the diagonal going from the lower left corner to the upper right corner (↗), known as the anti-diagonal (sometimes Harrison diagonal, secondary diagonal, trailing diagonal, minor diagonal, off diagonal or bad diagonal).

Formal definition

An n-by-n matrix A is an anti-diagonal matrix if the (i, j)th element aij is zero for all rows i and columns j whose indices do not sum to n + 1. Symbolically:

Example

An example of an anti-diagonal matrix is

Another example would be ...which can be used to reverse the elements of an array (as a column matrix) by multiplying on the left.


Properties

All anti-diagonal matrices are also persymmetric.

The product of two anti-diagonal matrices is a diagonal matrix. Furthermore, the product of an anti-diagonal matrix with a diagonal matrix is anti-diagonal, as is the product of a diagonal matrix with an anti-diagonal matrix.

An anti-diagonal matrix is invertible if and only if the entries on the diagonal from the lower left corner to the upper right corner are nonzero. The inverse of any invertible anti-diagonal matrix is also anti-diagonal, as can be seen from the paragraph above. The determinant of an anti-diagonal matrix has absolute value given by the product of the entries on the diagonal from the lower left corner to the upper right corner. However, the sign of this determinant will vary because the one nonzero signed elementary product from an anti-diagonal matrix will have a different sign depending on whether the permutation related to it is odd or even:

Matrix size Permutation for
nonzero elementary product of
anti-diagonal matrix
Even or odd Sign of elementary product
2 × 2 {2, 1} Odd
3 × 3 {3, 2, 1} Odd
4 × 4 {4, 3, 2, 1} Even +
5 × 5 {5, 4, 3, 2, 1} Even +
6 × 6 {6, 5, 4, 3, 2, 1} Odd

More precisely, the sign of the elementary product needed to calculate the determinant of an anti-diagonal matrix is related to whether the corresponding triangular number is even or odd. This is because the number of inversions in the permutation for the only nonzero signed elementary product of any n × n anti-diagonal matrix is always equal to the nth such number.

See also

  • Main diagonal, all off-diagonal elements are zero in a diagonal matrix.
  • Exchange matrix, an anti-diagonal matrix with 1s along the counter-diagonal.
  • "Anti-diagonal matrix". PlanetMath.

Read other articles:

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Desember 2022. Aïgue LongueCiri-ciri fisikMuara sungaiLuy-de-BéarnPanjang24 km Aïgue Longue atau Aygue Longue), merupakan sebuah anak sungai Luy de Béarn, di Mazerolles, Pyrénées-Atlantiques, di Baratdaya Prancis. Nama Namanya berarti 'aliran air panjang'. Geo...

 

Alfred LoewensteinLoewenstein (oleh Jos De Swerts, 1926)LahirAlfred Léonard Loewenstein(1877-03-11)11 Maret 1877BrusselsMeninggal4 Juli 1928(1928-07-04) (umur 51)Laut UtaraPekerjaanbankir, wirausahawan Alfred Léonard Loewenstein CB (11 Maret 1877 – 4 Juli 1928)[1] adalah seorang pemodal asal Belgia. Pada puncaknya pada 1920an, ia memiliki kekayaan sekitar £12 juta, menjadikannya orang terkaya ketiga di dunia pada masanya. Publikasi William Norris: The Man Who ...

 

Historic house in Connecticut, United States United States historic placeEphraim Wheeler HouseU.S. National Register of Historic Places Show map of ConnecticutShow map of the United StatesLocation470 Whippoorwill Lane,Stratford, ConnecticutCoordinates41°15′11.3″N 73°6′55.35″W / 41.253139°N 73.1153750°W / 41.253139; -73.1153750Architectural styleColonialNRHP reference No.92000318[1]Added to NRHPApril 17, 1992 The Ephraim Wheeler House ...

Anastasia LinLahirHunan, ChinaPemenang kontes kecantikanGelarMiss World Canada 2015Warna rambutHitamWarna mataHitam Anastasia Lin (Hanzi: 林耶凡; Pinyin: Lín Yēfán; kelahiran 1 Januari 1990) adalah seorang aktris, peragawati, pemegang gelar kontes kecantikan dan penyuara hak asasi manusia Tionghoa Kanada. Lin memenangkan gelar Miss World Canada pada 2015 dan mewakili Kanada di kontes Miss World 2015 yang diadakan di China namun visa-nya ditolak karena penyuaraan politiknya. Ia ...

 

Canadian poet, novelist, and writer (1974–2018) Priscila UppalFRSCBorn(1974-10-30)October 30, 1974Ottawa, OntarioDiedSeptember 5, 2018(2018-09-05) (aged 43)Toronto, OntarioOccupation(s)Poet, Novelist, Playwright, ProfessorAcademic backgroundAlma materYork University (BA. Hons; Ph.D) University of Toronto (MA)Academic workDisciplineEnglish studiesInstitutionsYork University Priscila Uppal FRSC (October 30, 1974 – September 5, 2018)[1] was a Canadian poet, novelist, fiction wri...

 

فيغاس بروالشعارمعلومات عامةنوع برامج تحرير الفيديو برامج تحرير الصوت نظام التشغيل مايكروسوفت ويندوز المنصة دوت نت فريموورك النموذج المصدري حقوق التأليف والنشر محفوظة متوفر بلغات الإنجليزية — الفرنسية — الإسبانية — الألمانية المطور الأصلي Sonic Foundry (en) المطورون Sonic Foundry (e...

Aryeh EldadEldad in 2009Lahir1 Mei 1950 (umur 74)Tempat lahirTel Aviv, IsraelKnesset16, 17, 18Faksi yang diwakili di Knesset2003–2012Uni Nasional2012–2013Otzma LeYisrael Aryeh Eldad, M.D. (Ibrani: אריה אלדד, lahir 1 Mei 1950) adalah seorang dokter dan politikus Israel, dan mantan anggota Knesset untuk Uni Nasional dan Otzma LeYisrael. Biografi Eldad lahir di Tel Aviv pada 1950. Pada masa kanak-kanak, ia menjadi pengisi suara dalam sandiwara radio untuk radio negeri Israel...

 

Військово-музичне управління Збройних сил України Тип військове формуванняЗасновано 1992Країна  Україна Емблема управління Військово-музичне управління Збройних сил України — структурний підрозділ Генерального штабу Збройних сил України призначений для планува...

 

Part of the worldwide Catholic Church Not to be confused with Catholic Church in England and Wales. Westminster Cathedral, London, England. Part of a series on theCatholic Church by country Africa Algeria Angola Benin Botswana Burkina Faso Burundi Cameroon Cape Verde Central African Republic Chad Comoros Democratic Republic of the Congo Republic of the Congo Djibouti Egypt Equatorial Guinea Eritrea Eswatini Ethiopia Gabon Gambia Ghana Guinea Guinea-Bissau Ivory Coast Kenya Lesotho Liberia Lib...

United States historic placeUnit III, Dayton ProjectU.S. National Register of Historic Places Buildings at Unit III, seen in 2012Show map of OhioShow map of the United StatesLocationDayton, OhioCoordinates39°43′29″N 84°10′46″W / 39.72472°N 84.17944°W / 39.72472; -84.17944Built1944–1945NRHP reference No.06000480Added to NRHP10 May 2006 The Dayton Project was a research and development project to produce polonium during World War II, as part of t...

 

乔冠华 中华人民共和国外交部部长 中国人民对外友好协会顾问 任期1974年11月—1976年12月总理周恩来 → 华国锋前任姬鹏飞继任黄华 个人资料性别男出生(1913-03-28)1913年3月28日 中華民國江蘇省盐城县逝世1983年9月22日(1983歲—09—22)(70歲) 中华人民共和国北京市籍贯江蘇鹽城国籍 中华人民共和国政党 中国共产党配偶明仁(1940年病逝) 龚澎(1970年病逝) 章含�...

 

For other uses, see Georgetown (disambiguation). City in South Carolina, United StatesGeorgetown, South CarolinaCityGeorgetown harbor SealLocation in Georgetown County and the state of South Carolina.Coordinates: 33°22′3″N 79°17′38″W / 33.36750°N 79.29389°W / 33.36750; -79.29389CountryUnited StatesStateSouth CarolinaCountyGeorgetownIncorporated1729Government • MayorCarol JayroeArea[1] • Total7.59 sq mi (19.65 k...

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Oktober 2022. Lingeer (juga: Linger atau Linguère) merupakan sebuah gelar yang diberikan kepada ibunda atau saudari raja[1] dalam bahasa Serer kerajaan-kerajaan Sine, Saloum, dan sebelumnya Kerajaan Baol; dan Wolof kerajaan-kerajaan Cayor, Jolof, Baol dan W...

 

German speed skater You can help expand this article with text translated from the corresponding article in German. (November 2021) Click [show] for important translation instructions. View a machine-translated version of the German article. Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate, rather than simply copy-pasting machine-translated text in...

 

Irregular galaxy in the constellation Indus IC 5152IC 5152 by the Hubble Space TelescopeObservation data (J2000 epoch)ConstellationIndusRight ascension22h 02m 41.521s [1]Declination−51° 17′ 47.20″[1]Redshift0.000407[2]Heliocentric radial velocity122 km/s[2]Distance5.87 ± 1.22 Mly(1.801 ± 0.374 Mpc)[2]Apparent magnitude (V)10.6[3]CharacteristicsTypeIA(s)m[2]Apparent size (V)4.9' x 2.8'[2]Ot...

Pour les articles homonymes, voir Mariage (homonymie). Sculpture représentant un couple marié dans l'Antiquité romaine. Hommage rendu à un couple romain décédé Le mariage romain (matrimonium) est une cérémonie rituelle. Il en existe plusieurs (ius conubii) dans la société et la femme bénéficie de plusieurs statuts : cum manu pour lequel elle est sous l'autorité juridique de son mari et sine manu où elle reste sous l'autorité juridique de son père, mais devient indépend...

 

Voce principale: Calcio Padova. Calcio PadovaStagione 1987-1988 Sport calcio Squadra Padova Allenatore Adriano Buffoni Presidente Marino Puggina Serie B9º Coppa ItaliaPrimo turno Maggiori presenzeCampionato: Da Re (38) Miglior marcatoreCampionato: Simonini (10) StadioStadio Silvio Appiani 1986-1987 1988-1989 Si invita a seguire il modello di voce Questa voce raccoglie i dati riguardanti il Calcio Padova nelle competizioni ufficiali della stagione 1987-1988. Indice 1 Stagione 2 Divise e...

 

معركة رأس كالياكرا جزء من الحرب الروسية العثمانية (1787-1792)   معلومات عامة التاريخ 11أغسطس ، 1791م البلد بلغاريا  الموقع 43°22′27″N 28°35′51″E / 43.3741°N 28.5974°E / 43.3741; 28.5974   النتيجة نصر الإمبراطورية الروسية المتحاربون الدولة العثمانية الإمبراطورية الروسية القوة 18 ب�...

  此条目页的主題是文成公主。关于其它含义,請見「文成公主 (消歧义)」。 本页面有藏文字母,操作系统及浏览器須支持特殊字母与符号才能正確显示为藏文字母,否则可能變成乱码、问号、空格等其它符号。 文成公主文成公主姓李姓出生武德六年 (623年)唐朝逝世永隆元年十月初五日680年11月1日(680歲—11—01)(57歲)逻些城親屬父親不详,可能是江夏王李道宗 ...

 

Education of children outside of a school Not to be confused with Distance education, Independent school, Out-of-school learning, or Autodidacticism. Homeschool and Home School redirect here. For the EP, see Homeschool (EP). For the novel, see Home School (novel). Educating children at home Homeschooling or home schooling (American English), also known as home education or elective home education (EHE) (British English),[1] is the education of school-aged children at home or a variety...