Hamiltonian matrix

In mathematics, a Hamiltonian matrix is a 2n-by-2n matrix A such that JA is symmetric, where J is the skew-symmetric matrix

and In is the n-by-n identity matrix. In other words, A is Hamiltonian if and only if (JA)T = JA where ()T denotes the transpose.[1] (Not to be confused with Hamiltonian (quantum mechanics))

Properties

Suppose that the 2n-by-2n matrix A is written as the block matrix

where a, b, c, and d are n-by-n matrices. Then the condition that A be Hamiltonian is equivalent to requiring that the matrices b and c are symmetric, and that a + dT = 0.[1][2] Another equivalent condition is that A is of the form A = JS with S symmetric.[2]: 34 

It follows easily from the definition that the transpose of a Hamiltonian matrix is Hamiltonian. Furthermore, the sum (and any linear combination) of two Hamiltonian matrices is again Hamiltonian, as is their commutator. It follows that the space of all Hamiltonian matrices is a Lie algebra, denoted sp(2n). The dimension of sp(2n) is 2n2 + n. The corresponding Lie group is the symplectic group Sp(2n). This group consists of the symplectic matrices, those matrices A which satisfy ATJA = J. Thus, the matrix exponential of a Hamiltonian matrix is symplectic. However the logarithm of a symplectic matrix is not necessarily Hamiltonian because the exponential map from the Lie algebra to the group is not surjective.[2]: 34–36 [3]

The characteristic polynomial of a real Hamiltonian matrix is even. Thus, if a Hamiltonian matrix has λ as an eigenvalue, then −λ, λ* and −λ* are also eigenvalues.[2]: 45  It follows that the trace of a Hamiltonian matrix is zero.

The square of a Hamiltonian matrix is skew-Hamiltonian (a matrix A is skew-Hamiltonian if (JA)T = −JA). Conversely, every skew-Hamiltonian matrix arises as the square of a Hamiltonian matrix.[4]

Extension to complex matrices

As for symplectic matrices, the definition for Hamiltonian matrices can be extended to complex matrices in two ways. One possibility is to say that a matrix A is Hamiltonian if (JA)T = JA, as above.[1][4] Another possibility is to use the condition (JA)* = JA where the superscript asterisk ((⋅)*) denotes the conjugate transpose.[5]

Hamiltonian operators

Let V be a vector space, equipped with a symplectic form Ω. A linear map is called a Hamiltonian operator with respect to Ω if the form is symmetric. Equivalently, it should satisfy

Choose a basis e1, …, e2n in V, such that Ω is written as . A linear operator is Hamiltonian with respect to Ω if and only if its matrix in this basis is Hamiltonian.[4]

References

  1. ^ a b c Ikramov, Khakim D. (2001), "Hamiltonian square roots of skew-Hamiltonian matrices revisited", Linear Algebra and its Applications, 325: 101–107, doi:10.1016/S0024-3795(00)00304-9.
  2. ^ a b c d Meyer, K. R.; Hall, G. R. (1991), Introduction to Hamiltonian dynamical systems and the N-body problem, Springer, ISBN 0-387-97637-X.
  3. ^ Dragt, Alex J. (2005), "The symplectic group and classical mechanics", Annals of the New York Academy of Sciences, 1045 (1): 291–307, doi:10.1196/annals.1350.025, PMID 15980319.
  4. ^ a b c Waterhouse, William C. (2005), "The structure of alternating-Hamiltonian matrices", Linear Algebra and its Applications, 396: 385–390, doi:10.1016/j.laa.2004.10.003.
  5. ^ Paige, Chris; Van Loan, Charles (1981), "A Schur decomposition for Hamiltonian matrices", Linear Algebra and its Applications, 41: 11–32, doi:10.1016/0024-3795(81)90086-0.

Read other articles:

VEB Gaskombinat „Fritz Selbmann“ Schwarze Pumpe Logo Rechtsform VEB Kombinat Gründung 1970 Auflösung 1990 Auflösungsgrund Privatisierung Sitz Schwarze Pumpe,Deutschland Demokratische Republik 1949 Deutsche Demokratische Republik Mitarbeiterzahl 32.951[1] Branche Braunkohlenverarbeitung und -veredelung Stand: 30. Juni 1990 Gaskombinat Schwarze Pumpe (1975) Der VEB Gaskombinat Schwarze Pumpe, ab 1986 VEB Gaskombinat „Fritz Selbmann“ Schwarze Pumpe (abgekürzt GKSP,...

 

Anteros, lebih populer dengan sebutan Eros, karya Alfred Gilbert, 1885. Erotes adalah sekelompok dewa bersayap dalam mitologi Yunani yang melambangkan cinta dan gairah seksual.Para Erotes adalah anak dari Ares dan Afrodit. Anggota Erotes antara lain Eros, Anteros, Himeros, dan Pothos. Pranala luar (Inggris) Erotes di Theoi (Inggris) Erotes di Greek Mythology Index Diarsipkan 2011-07-03 di Wayback Machine. Artikel bertopik Mitologi Yunani ini adalah sebuah rintisan. Anda dapat membantu Wikiped...

 

Cierra RamirezRamirez pada 2014LahirCierra Alexa Ramirez9 Maret 1995 (umur 29)Texas, Amerika serikatPekerjaanPenyanyi dan aktrisTahun aktif2006–sekarangDikenal atasMariana Adams Foster dalam The Fosters (2013) dan Good Trouble Cierra Alexa Ramirez (lahir 9 Maret 1995) adalah seorang aktris dan penyanyi Amerika Serikat. Dia memainkan karakter Mariana Adams Foster dalam serial dari saluran TV kabel Freeform berjudul The Fosters dan mengulang perannya dalam serial sempalan berjudul ...

Township in Illinois, United StatesFlora TownshipTownshipLocation in Boone CountyBoone County's location in IllinoisCoordinates: 42°11′34″N 88°53′26″W / 42.19278°N 88.89056°W / 42.19278; -88.89056CountryUnited StatesStateIllinoisCountyBooneSettlementNovember 6, 1849Area • Total36.49 sq mi (94.5 km2) • Land36.46 sq mi (94.4 km2) • Water0.03 sq mi (0.08 km2)  0.08%Elevation...

 

GhibahSutradaraMonty TiwaProduserDheeraj KalwaniDitulis oleh Aviv Elham Monty Tiwa Riza Pahlevi Vidya Ariestya Pemeran Anggika Bölsterli Verrell Bramasta Zsa Zsa Utari Arafah Rianti Opie Kumis Asri Welas Josephine Firmstone Adila Fitri Penata musikJoseph S. DjafarSinematograferSuhendriPenyunting Teguh Raharjo Bobby Prabowo Perusahaanproduksi Blue Water Films Dee Company DistributorDisney+ HotstarTanggal rilis 30 Juli 2021 (2021-07-30) (Indonesia) Durasi98 menitNegaraIndonesiaB...

 

Adoption of a different religion or irreligion under duress For conversion of data types, see Type punning. Part of a series onDiscrimination Forms Institutional Structural Attributes Age Caste Class Dialect Disability Genetic Hair texture Height Language Looks Mental disorder Race / Ethnicity Skin color Scientific racism Rank Sex Sexual orientation Species Size Viewpoint Social Arophobia Acephobia Adultism Anti-albinism Anti-autism Anti-homelessness Anti-drug addicts Anti-intellectu...

Borough Doylestown Borough Bucks County Court House Berkas:Doylestown borough seal pa.png Seal Dinamai dari: William Doyle Negara Amerika Serikat Provinsi Pennsylvania Kabupaten Bucks Elevasi 456 ft (139 m) Area 2,2 sq mi (5,7 km2)  - land 2,2 sq mi (6 km2)  - water 0,0 sq mi (0 km2), 0% Population 8,380 (2010) Density 3.822,5 / sq mi (1.475,9 / km²) Dibentuk 1745  - Dikorporasik...

 

City in Iowa, United StatesPrinceton, IowaCityMotto: Princeton on the MississippiLocation of Princeton, IowaCoordinates: 41°40′24″N 90°20′35″W / 41.67333°N 90.34306°W / 41.67333; -90.34306CountryUnited StatesState IowaCountyScottGovernment • MayorRoger WoomertArea[1] • City3.26 sq mi (8.45 km2) • Land3.26 sq mi (8.45 km2) • Water0.00 sq mi (0.00 k...

 

Европейская сардина Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеГруппа:Костные рыбыКласс:Лучепёрые рыбыПодкласс:Новопёры...

Place in Northern, IsraelNa'uraNa'uraShow map of Northeast IsraelNa'uraShow map of IsraelCoordinates: 32°36′52″N 35°23′28″E / 32.61444°N 35.39111°E / 32.61444; 35.39111Grid position187/224 PALCountry IsraelDistrictNorthernCouncilGilboaPopulation (2022)[1]2,421 Na'ura (Arabic: ناعورة, Hebrew: נָעוּרָה) is an Arab village located in northern Israel. Located to the east of Afula, it falls under the jurisdiction of the Gilbo...

 

Political application of the Christian doctrine of Paul of Tarsus Corporatism Concepts Corporate group Body politic Organicism Solidarity Structural functionalism Schools Christian Conservative Fascist Liberal Nationalistic Social Solidarist Statist Tripartite People Aristotle Durkheim Hegel Khaldūn Mill Müller Mussolini Plato Paul the Apostle Salazar Spann Tönnies Vargas Related articles Consociationalism Fascism Gemeinschaft and Gesellschaft Guild Guild socialism Political philosophy Pol...

 

Wireless technique of sending and receiving messages through water Example of multi-path propagation Underwater acoustic communication is a technique of sending and receiving messages in water.[1] There are several ways of employing such communication but the most common is by using hydrophones. Underwater communication is difficult due to factors such as multi-path propagation, time variations of the channel, small available bandwidth and strong signal attenuation, especially over lo...

Hospital in California, United States Hospital in California , United StatesZuckerberg San Francisco General Hospital and Trauma CenterSan Francisco Department of Public HealthSan Francisco General Hospital (seen against the backdrop of Potrero Hill and the Bay Bridge, and parts of the Mission District in the foreground)GeographyLocation1001 Potrero AveSan Francisco, California 94110, United StatesCoordinates37°45′20″N 122°24′18″W / 37.75556°N 122.40500°W /...

 

Terdapat juga Keuskupan Rio de Janeiro (dan Uskup Rio de Janeiro) dalam Gereja Episkopal Anglikan Brasil. Keuskupan Agung São Sebastião do Rio de JaneiroArchidioecesis Sancti Sebastiani Fluminis IanuariiKatolik Katedral Rio de JaneiroLokasiNegaraBrasilProvinsi gerejawiProvinsi São Sebastião do Rio de JaneiroPopulasi- Katolik3,556,095 (60.7%)InformasiDenominasiKatolik RomaRitusRitus RomaPendirian19 Juli 1575KatedralKatedral Rio de JaneiroPelindungSanto Sebastian (utama) dan ...

 

LE

  关于维基百科模板,请见“Template:le”。 查看维基词典中的词条「LE」「Le」或「le」。 LE或le可以指: 乐视视频(Le.com) 樂視控股 LE (饒舌歌手) 黎姓在越南的羅馬拼音。 英國莱斯特郡的郵政編碼 萊切省,意大利普利亞大区的一個省。 水平航空的IATA代碼。 月食(Lunar eclipse)的英文簡稱。 法语的定冠词 这是一个消歧义页,羅列了有相同或相近的标题,但內容不同�...

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (نوفمبر 2022) مدارات الشرق معلومات الكتاب المؤلف نبيل سليمان البلد  سوريا اللغة العربية النوع الأدبي رواية تعديل مصدري - تعديل   مدارات الشرق رواية سورية ألفها الكا�...

 

American singer Willie MackBackground informationBornTulsa, Oklahoma, United StatesGenresCountryOccupation(s)Singer-songwriterYears active2003–presentLabelsOpen Road RecordingsWebsitewww.williemack.comMusical artist Willie Mack is an American country music singer-songwriter born in Tulsa, Oklahoma and raised in Chico, Texas.[1] He has had his songs recorded by Sara Evans, Collin Raye, The Oak Ridge Boys, and Mark Wills among others.[2] His single Don't Waste Your Pretty char...

 

この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。 出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方)出典検索?: 宍戸駅 – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL (2014年6月) 宍戸駅[* 1] 駅舎(2022年1月) ししど Shishido `...

画像提供依頼:1.端末正面2.端末側面または背面・カラバリの画像提供をお願いします。(2009年7月) ポータル ディズニー ディズニー・モバイル DM004SH キャリア ディズニー・モバイル 製造 シャープ 発売日 2009年7月17日 概要 音声通信方式 GSM/UMTS(900/1800/1900MHz(GSM)2100MHz(UMTS)) データ通信方式 GPRS/HSDPA 形状 折りたたみ サイズ 105 × 49 × 15.9 mm 質量 109 g 連�...

 

  لمعانٍ أخرى، طالع أبو جعفر (توضيح). أبو جعفر العقيلي معلومات شخصية الحياة العملية المهنة مُحَدِّث  تعديل مصدري - تعديل   أبو جعفر العقيلي[1] هو محدث من أهل مكة في القرن الثالث الهجري. له عدة تصانيف. توفي سنة 322 هـ. نسبه وكنيته ونسبته هو محمد بن عمرو بن موسى بن محم�...