Permutation matrix

In mathematics, particularly in matrix theory, a permutation matrix is a square binary matrix that has exactly one entry of 1 in each row and each column with all other entries 0.[1]: 26  An n × n permutation matrix can represent a permutation of n elements. Pre-multiplying an n-row matrix M by a permutation matrix P, forming PM, results in permuting the rows of M, while post-multiplying an n-column matrix M, forming MP, permutes the columns of M.

Every permutation matrix P is orthogonal, with its inverse equal to its transpose: .[1]: 26  Indeed, permutation matrices can be characterized as the orthogonal matrices whose entries are all non-negative.[2]

The two permutation/matrix correspondences

There are two natural one-to-one correspondences between permutations and permutation matrices, one of which works along the rows of the matrix, the other along its columns. Here is an example, starting with a permutation π in two-line form at the upper left:

The row-based correspondence takes the permutation π to the matrix at the upper right. The first row of has its 1 in the third column because . More generally, we have where when and otherwise.

The column-based correspondence takes π to the matrix at the lower left. The first column of has its 1 in the third row because . More generally, we have where is 1 when and 0 otherwise. Since the two recipes differ only by swapping i with j, the matrix is the transpose of ; and, since is a permutation matrix, we have . Tracing the other two sides of the big square, we have and .[3]

Permutation matrices permute rows or columns

Multiplying a matrix M by either or on either the left or the right will permute either the rows or columns of M by either π or π−1. The details are a bit tricky.

To begin with, when we permute the entries of a vector by some permutation π, we move the entry of the input vector into the slot of the output vector. Which entry then ends up in, say, the first slot of the output? Answer: The entry for which , and hence . Arguing similarly about each of the slots, we find that the output vector is

even though we are permuting by , not by . Thus, in order to permute the entries by , we must permute the indices by .[1]: 25  (Permuting the entries by is sometimes called taking the alibi viewpoint, while permuting the indices by would take the alias viewpoint.[4])

Now, suppose that we pre-multiply some n-row matrix by the permutation matrix . By the rule for matrix multiplication, the entry in the product is

where is 0 except when , when it is 1. Thus, the only term in the sum that survives is the term in which , and the sum reduces to . Since we have permuted the row index by , we have permuted the rows of M themselves by π.[1]: 25  A similar argument shows that post-multiplying an n-column matrix M by permutes its columns by π.

The other two options are pre-multiplying by or post-multiplying by , and they permute the rows or columns respectively by π−1, instead of by π.

The transpose is also the inverse

A related argument proves that, as we claimed above, the transpose of any permutation matrix P also acts as its inverse, which implies that P is invertible. (Artin leaves that proof as an exercise,[1]: 26  which we here solve.) If , then the entry of its transpose is . The entry of the product is then

Whenever , the term in this sum is the product of two different entries in the column of P; so all terms are 0, and the sum is 0. When , we are summing the squares of the entries in the row of P, so the sum is 1. The product is thus the identity matrix. A symmetric argument shows the same for , implying that P is invertible with .

Multiplying permutation matrices

Given two permutations of n elements 𝜎 and 𝜏, the product of the corresponding column-based permutation matrices Cσ and Cτ is given,[1]: 25  as you might expect, by where the composed permutation applies first 𝜏 and then 𝜎, working from right to left: This follows because pre-multiplying some matrix by Cτ and then pre-multiplying the resulting product by Cσ gives the same result as pre-multiplying just once by the combined .

For the row-based matrices, there is a twist: The product of Rσ and Rτ is given by

with 𝜎 applied before 𝜏 in the composed permutation. This happens because we must post-multiply to avoid inversions under the row-based option, so we would post-multiply first by Rσ and then by Rτ.

Some people, when applying a function to an argument, write the function after the argument (postfix notation), rather than before it. When doing linear algebra, they work with linear spaces of row vectors, and they apply a linear map to an argument by using the map's matrix to post-multiply the argument's row vector. They often use a left-to-right composition operator, which we here denote using a semicolon; so the composition is defined either by

or, more elegantly, by

with 𝜎 applied first. That notation gives us a simpler rule for multiplying row-based permutation matrices:

Matrix group

When π is the identity permutation, which has for all i, both Cπ and Rπ are the identity matrix.

There are n! permutation matrices, since there are n! permutations and the map is a one-to-one correspondence between permutations and permutation matrices. (The map is another such correspondence.) By the formulas above, those n × n permutation matrices form a group of order n! under matrix multiplication, with the identity matrix as its identity element, a group that we denote . The group is a subgroup of the general linear group of invertible n × n matrices of real numbers. Indeed, for any field F, the group is also a subgroup of the group , where the matrix entries belong to F. (Every field contains 0 and 1 with and and that's all we need to multiply permutation matrices. Different fields disagree about whether , but that sum doesn't arise.)

Let denote the symmetric group, or group of permutations, on {1,2,...,n} where the group operation is the standard, right-to-left composition ""; and let denote the opposite group, which uses the left-to-right composition "". The map that takes π to its column-based matrix is a faithful representation, and similarly for the map that takes π to .

Doubly stochastic matrices

Every permutation matrix is doubly stochastic. The set of all doubly stochastic matrices is called the Birkhoff polytope, and the permutation matrices play a special role in that polytope. The Birkhoff–von Neumann theorem says that every doubly stochastic real matrix is a convex combination of permutation matrices of the same order, with the permutation matrices being precisely the extreme points (the vertices) of the Birkhoff polytope. The Birkhoff polytope is thus the convex hull of the permutation matrices.[5]

Linear-algebraic properties

Just as each permutation is associated with two permutation matrices, each permutation matrix is associated with two permutations, as we can see by relabeling the example in the big square above starting with the matrix P at the upper right:

So we are here denoting the inverse of C as and the inverse of R as . We can then compute the linear-algebraic properties of P from some combinatorial properties that are shared by the two permutations and .

A point is fixed by just when it is fixed by , and the trace of P is the number of such shared fixed points.[1]: 322  If the integer k is one of them, then the standard basis vector ek is an eigenvector of P.[1]: 118 

To calculate the complex eigenvalues of P, write the permutation as a composition of disjoint cycles, say . (Permutations of disjoint subsets commute, so it doesn't matter here whether we are composing right-to-left or left-to-right.) For , let the length of the cycle be , and let be the set of complex solutions of , those solutions being the roots of unity. The multiset union of the is then the multiset of eigenvalues of P. Since writing as a product of cycles would give the same number of cycles of the same lengths, analyzing would give the same result. The multiplicity of any eigenvalue v is the number of i for which contains v.[6] (Since any permutation matrix is normal and any normal matrix is diagonalizable over the complex numbers,[1]: 259  the algebraic and geometric multiplicities of an eigenvalue v are the same.)

From group theory we know that any permutation may be written as a composition of transpositions. Therefore, any permutation matrix factors as a product of row-switching elementary matrices, each of which has determinant −1. Thus, the determinant of the permutation matrix P is the sign of the permutation , which is also the sign of .

Restricted forms

  • Costas array, a permutation matrix in which the displacement vectors between the entries are all distinct
  • n-queens puzzle, a permutation matrix in which there is at most one entry in each diagonal and antidiagonal

See also

References

  1. ^ a b c d e f g h i Artin, Michael (1991). Algebra. Prentice Hall. pp. 24–26, 118, 259, 322. ISBN 0-13-004763-5. OCLC 24364036.
  2. ^ Zavlanos, Michael M.; Pappas, George J. (November 2008). "A dynamical systems approach to weighted graph matching". Automatica. 44 (11): 2817–2824. CiteSeerX 10.1.1.128.6870. doi:10.1016/j.automatica.2008.04.009. S2CID 834305. Retrieved 21 August 2022. Let denote the set of orthogonal matrices and denote the set of element-wise non-negative matrices. Then, , where is the set of permutation matrices.
  3. ^ This terminology is not standard. Most authors use just one of the two correspondences, choosing which to be consistent with their other conventions. For example, Artin uses the column-based correspondence. We have here invented two names in order to discuss both options.
  4. ^ Conway, John H.; Burgiel, Heidi; Goodman-Strauss, Chaim (2008). The Symmetries of Things. A K Peters/CRC Press. p. 179. doi:10.1201/b21368. ISBN 978-0-429-06306-0. OCLC 946786108. A permutation—say, of the names of a number of people—can be thought of as moving either the names or the people. The alias viewpoint regards the permutation as assigning a new name or alias to each person (from the Latin alias = otherwise). Alternatively, from the alibi viewoint we move the people to the places corresponding to their new names (from the Latin alibi = in another place.)
  5. ^ Brualdi 2006, p. 19
  6. ^ Najnudel & Nikeghbali 2013, p. 4

Read other articles:

Disambiguazione – Se stai cercando altri significati, vedi Mese (disambigua). Il mese è una suddivisione dell'anno. Etimologicamente, il termine mese (dal latino mēnsis) ha la stessa radice dell'inglese moon e del tedesco Mond, entrambi col significato di luna[1]. Nella maggior parte dei calendari, il mese dura una trentina di giorni e, di conseguenza, l'anno conta solitamente 12 mesi. Nel comune calendario gregoriano, come nella maggior parte dei calendari solari, l'anno consta ...

 

In-house animation division of Warner Bros. (1933–1963) Warner Bros. Cartoons, Inc.Final logo, used from 1944 to 1948 and from 1953 to 1964FormerlyLeon Schlesinger Productions (1933–1944)Company typePrivateIndustryAnimationMotion picturesPredecessorHarman-Ising ProductionsFoundedJune 1933; 90 years ago (1933-06)[1]FounderLeon SchlesingerDefunctMay 1963; 60 years ago (1963-05)[2]FateClosedSuccessorsDePatie–Freleng Enterprises ...

 

Cet article est une ébauche concernant une chaîne de télévision et l’Allemagne. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. ProSieben FunCaractéristiquesCréation 3 mai 2012Propriétaire ProSiebenSat.1 MediaFormat d'image 576i (SDTV), 720p (HDTV)Langue AllemandPays AllemagneStatut Généraliste nationale privéeSiège social UnterföhringSite web www.prosiebenfun.deDiffusionDiffusion Satellite, câble...

Firearm adjustment The SIG 550 has four modes: safe (at which the rifle cannot be fired; S), one round (1), three-round burst (3) and full automatic (obscured by the switch lever). Selective fire, or select fire, is the capability of a weapon to be adjusted to fire in semi-automatic, fully automatic, and/or burst mode.[1] The modes are chosen by means of a selector switch, which varies depending on the weapon's design. Some selective-fire weapons have burst fire mechanisms to limit th...

 

G markEffective regionGulf Cooperation CouncilEffective since2009Product categoryVariousLegal statusMandatoryWebsitewww.gso.org.sa/en/conformity/gcc-conformity-mark Gulf Conformity mark, also known as G-mark is a certification mark used to indicate products that conform to all technical regulations of the Gulf Cooperation Council. It means that the G-marked products meet all requirements of the corresponding technical regulations and have passed all conformity assessment procedures. The mark ...

 

Rock overlying a less resistant type For the region in Texas, see Caprock, Texas.Caprock or cap rock is a more resistant rock type overlying a less resistant rock type,[1] analogous to an upper crust on a cake that is harder than the underlying layer. Description Horseshoe Falls, part of the Niagara Escarpment. The dark thin layer in the foreground, where water is not yet running, is the caprock. The Niagara Escarpment, over which Niagara Falls flows, is an example of a scarp or escar...

Comune in Lombardy, ItalyValdisotto Val de Sota (Lombard)ComuneComune di Valdisotto Coat of armsLocation of Valdisotto ValdisottoLocation of Valdisotto in ItalyShow map of ItalyValdisottoValdisotto (Lombardy)Show map of LombardyCoordinates: 46°25′N 10°21′E / 46.417°N 10.350°E / 46.417; 10.350CountryItalyRegionLombardyProvinceSondrio (SO)FrazioniAquilone, Capitania, Cepina, Oga, Piatta, Piazza, San Pietro, Santa Lucia, Santa Maria, Sant'Antonio Morignone, T...

 

Japanese electronics corporation Nippon Chemi-Con CorporationCHEMI-CON logoNative name日本ケミコン株式会社Company typePublic KKTraded asTYO: 6997ISINJP3701200002IndustryElectronicsFoundedas Satoh Denki Kogyosho (August 1931; 92 years ago (1931-08))FounderToshio SatohHeadquartersOsaki, Shinagawa-ku, Tokyo 141-8605, Japan35°37′21″N 139°43′27″E / 35.622599°N 139.724300°E / 35.622599; 139.724300Area servedWorldwideKey peopleNori...

 

Pour l’article homonyme, voir Schilling. Govert SchillingGovert Schilling en 2015.BiographieNaissance 30 novembre 1956 (67 ans)MeerkerkNationalité néerlandaiseActivités Traducteur, écrivain, journaliste, astronomeAutres informationsSite web www.govertschilling.nlDistinction Prix Eurêka de la communication des sciences (2002)modifier - modifier le code - modifier Wikidata Govert Schilling, né le 30 novembre 1956 à Meerkerk, aux Pays-Bas, est un écrivain de vulgarisation scienti...

Sommières-du-ClaincomuneSommières-du-Clain – Veduta LocalizzazioneStato Francia Regione Nuova Aquitania Dipartimento Vienne ArrondissementMontmorillon CantoneCivray TerritorioCoordinate46°17′N 0°21′E / 46.283333°N 0.35°E46.283333; 0.35 (Sommières-du-Clain)Coordinate: 46°17′N 0°21′E / 46.283333°N 0.35°E46.283333; 0.35 (Sommières-du-Clain) Superficie26,46 km² Abitanti819[1] (2009) Densità30,95 ab./km² Altre ...

 

Сельское поселение России (МО 2-го уровня)Новотитаровское сельское поселение Флаг[d] Герб 45°14′09″ с. ш. 38°58′16″ в. д.HGЯO Страна  Россия Субъект РФ Краснодарский край Район Динской Включает 4 населённых пункта Адм. центр Новотитаровская Глава сельского пос�...

 

Jardín botánico de la Universidad Austral de Chile Una vista del jardín botánico de la UACh.UbicaciónPaís  ChileLocalidad Chile Chile,  Los RíosCoordenadas 39°48′16″S 73°15′01″O / -39.8045, -73.2502CaracterísticasOtros nombres Jardín Botánico de la UAChTipo Jardín botánico.Vías adyacentes Isla Teja.Área 10 hectáreas.HistoriaInauguración Creación en el 1957.GestiónOperador Universidad Austral de Chile.Mapa de localización Ubicación d...

العلاقات السويسرية القيرغيزستانية سويسرا قيرغيزستان   سويسرا   قيرغيزستان تعديل مصدري - تعديل   العلاقات السويسرية القيرغيزستانية هي العلاقات الثنائية التي تجمع بين سويسرا وقيرغيزستان.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعي...

 

Ini adalah nama Batak Toba, marganya adalah Simbolon. Cornel Simbolon Wakil Kepala Staf TNI Angkatan DaratMasa jabatan19 November 2007 – 22 Juli 2008PendahuluHarry TjahjanaPenggantiJohannes Suryo Prabowo Informasi pribadiLahir14 Juli 1951 (umur 72)Pangururan, Kabupaten Samosir, Sumatera UtaraKebangsaanIndonesiaPartai politikDemokratSuami/istriNy. Elisabeth RatnasariAnak3Alma materAkademi Militer (1973)PekerjaanTentara PolitisiKarier militerPihak IndonesiaDinas/cabang TNI ...

 

الصفا شعار نادي الصفا الاسم الكامل نادي الصفا الرياضي الثقافي الاجتماعي الاسم المختصر الصفا تأسس عام 1368هـ - 1947م الملعب ملعب نادي الصفا بصفوى(السعة: 3000 متفرج) البلد السعودية  الدوري دوري يلو دوري يلو 2023 _ 2024 الثالث الإدارة الرئيس محمد حسن آل إبراهيم المشرف الرياضي يحيى عب�...

Bài này viết về một vùng hiện tại của Hy Lạp. Đối với vùng cổ, xem Thessaly Cổ. Đối với nhân vật trong truyện Vertigo, xem Thessaly (truyện tranh). ThessalyΠεριφέρεια Θεσσαλίας—  Vùng của Hy Lạp  — ThessalyTọa độ: 39°36′B 22°12′Đ / 39,6°B 22,2°Đ / 39.6; 22.2 Quốc gia Hy LạpThủ phủLarissaĐơn vị thuộc vùng Danh sách KarditsaLarissaMagnes...

 

Artikel ini bukan mengenai Google Glass. Google GogglesTipePerangkat lunak milik perorangan dan image recognition (en) Versi pertama5 Oktober 2010; 13 tahun lalu (2010-10-05)Versi stabil 1.9.4 (20 Agustus 2018) LisensiLisensi proprietarium BahasaDaftarbahasa Inggris, bahasa Italia, bahasa Jerman, bahasa Prancis dan bahasa Spanyol Karakteristik teknisSistem operasiAndroid, sebelumnya iOSUkuran2,7 MBBahasa pemrogramanJava Informasi pengembangPengembangGoogle LLCPenerbitGoogle Play Inf...

 

Windows 3.1 Entwickler Microsoft Lizenz(en) Microsoft EULA (Closed Source) Erstveröff. 6. April 1992 Akt. Version 3.11 (November 1993) Kernel PC-kompatibles DOS ↳ Windows-Kernel Abstammung Windows 1.0–2.11↳ Windows 3.x Chronik Windows 1.0Windows 2.0Windows 3.0Windows 3.1Windows 95Windows 98Windows Me Sonstiges Entwicklung am 31. Dezember 2001 eingestellt www.microsoft.com Microsoft Windows 3.1 (Arbeitsname: Janus)[1][2] ist eine grafische B...

迈索隆吉Μεσολόγγι在大區內的位置迈索隆吉在希臘的位置坐标:38°22′07″N 21°25′44″E / 38.3686°N 21.4289°E / 38.3686; 21.4289国家 希腊大区西希腊大区政府 • 市长Ioannis Anagnostopoulos面积 • 总计280.168 平方公里(108.173 平方英里)最高海拔9 公尺(30 英尺)最低海拔0 公尺(0 英尺)人口(2011)[1] • 總計...

 

В Википедии есть статьи о других людях с такой фамилией, см. Давыдов; Давыдов, Алексей. Алексей Александрович Давыдов Дата рождения 20 сентября 1956(1956-09-20) (67 лет) Место рождения Чертково, Селивановский район, Владимирская область, СССР Страна  СССР→ Россия Род дея�...