Toeplitz matrix
Matrix with shifting rows
In linear algebra , a Toeplitz matrix or diagonal-constant matrix , named after Otto Toeplitz , is a matrix in which each descending diagonal from left to right is constant. For instance, the following matrix is a Toeplitz matrix:
[
a
b
c
d
e
f
a
b
c
d
g
f
a
b
c
h
g
f
a
b
i
h
g
f
a
]
.
{\displaystyle \qquad {\begin{bmatrix}a&b&c&d&e\\f&a&b&c&d\\g&f&a&b&c\\h&g&f&a&b\\i&h&g&f&a\end{bmatrix}}.}
Any
n
× × -->
n
{\displaystyle n\times n}
matrix
A
{\displaystyle A}
of the form
A
=
[
a
0
a
− − -->
1
a
− − -->
2
⋯ ⋯ -->
⋯ ⋯ -->
a
− − -->
(
n
− − -->
1
)
a
1
a
0
a
− − -->
1
⋱ ⋱ -->
⋮ ⋮ -->
a
2
a
1
⋱ ⋱ -->
⋱ ⋱ -->
⋱ ⋱ -->
⋮ ⋮ -->
⋮ ⋮ -->
⋱ ⋱ -->
⋱ ⋱ -->
⋱ ⋱ -->
a
− − -->
1
a
− − -->
2
⋮ ⋮ -->
⋱ ⋱ -->
a
1
a
0
a
− − -->
1
a
n
− − -->
1
⋯ ⋯ -->
⋯ ⋯ -->
a
2
a
1
a
0
]
{\displaystyle A={\begin{bmatrix}a_{0}&a_{-1}&a_{-2}&\cdots &\cdots &a_{-(n-1)}\\a_{1}&a_{0}&a_{-1}&\ddots &&\vdots \\a_{2}&a_{1}&\ddots &\ddots &\ddots &\vdots \\\vdots &\ddots &\ddots &\ddots &a_{-1}&a_{-2}\\\vdots &&\ddots &a_{1}&a_{0}&a_{-1}\\a_{n-1}&\cdots &\cdots &a_{2}&a_{1}&a_{0}\end{bmatrix}}}
is a Toeplitz matrix . If the
i
,
j
{\displaystyle i,j}
element of
A
{\displaystyle A}
is denoted
A
i
,
j
{\displaystyle A_{i,j}}
then we have
A
i
,
j
=
A
i
+
1
,
j
+
1
=
a
i
− − -->
j
.
{\displaystyle A_{i,j}=A_{i+1,j+1}=a_{i-j}.}
A Toeplitz matrix is not necessarily square .
Solving a Toeplitz system
A matrix equation of the form
A
x
=
b
{\displaystyle Ax=b}
is called a Toeplitz system if
A
{\displaystyle A}
is a Toeplitz matrix. If
A
{\displaystyle A}
is an
n
× × -->
n
{\displaystyle n\times n}
Toeplitz matrix, then the system has at most only
2
n
− − -->
1
{\displaystyle 2n-1}
unique values, rather than
n
2
{\displaystyle n^{2}}
. We might therefore expect that the solution of a Toeplitz system would be easier, and indeed that is the case.
Toeplitz systems can be solved by algorithms such as the Schur algorithm or the Levinson algorithm in
O
(
n
2
)
{\displaystyle O(n^{2})}
time.[ 1] [ 2] Variants of the latter have been shown to be weakly stable (i.e. they exhibit numerical stability for well-conditioned linear systems ).[ 3] The algorithms can also be used to find the determinant of a Toeplitz matrix in
O
(
n
2
)
{\displaystyle O(n^{2})}
time.[ 4]
A Toeplitz matrix can also be decomposed (i.e. factored) in
O
(
n
2
)
{\displaystyle O(n^{2})}
time .[ 5] The Bareiss algorithm for an LU decomposition is stable.[ 6] An LU decomposition gives a quick method for solving a Toeplitz system, and also for computing the determinant.
Properties
An
n
× × -->
n
{\displaystyle n\times n}
Toeplitz matrix may be defined as a matrix
A
{\displaystyle A}
where
A
i
,
j
=
c
i
− − -->
j
{\displaystyle A_{i,j}=c_{i-j}}
, for constants
c
1
− − -->
n
,
… … -->
,
c
n
− − -->
1
{\displaystyle c_{1-n},\ldots ,c_{n-1}}
. The set of
n
× × -->
n
{\displaystyle n\times n}
Toeplitz matrices is a subspace of the vector space of
n
× × -->
n
{\displaystyle n\times n}
matrices (under matrix addition and scalar multiplication).
Two Toeplitz matrices may be added in
O
(
n
)
{\displaystyle O(n)}
time (by storing only one value of each diagonal) and multiplied in
O
(
n
2
)
{\displaystyle O(n^{2})}
time.
Toeplitz matrices are persymmetric . Symmetric Toeplitz matrices are both centrosymmetric and bisymmetric .
Toeplitz matrices are also closely connected with Fourier series , because the multiplication operator by a trigonometric polynomial , compressed to a finite-dimensional space, can be represented by such a matrix. Similarly, one can represent linear convolution as multiplication by a Toeplitz matrix.
Toeplitz matrices commute asymptotically . This means they diagonalize in the same basis when the row and column dimension tends to infinity.
For symmetric Toeplitz matrices, there is the decomposition
1
a
0
A
=
G
G
T
− − -->
(
G
− − -->
I
)
(
G
− − -->
I
)
T
{\displaystyle {\frac {1}{a_{0}}}A=GG^{\operatorname {T} }-(G-I)(G-I)^{\operatorname {T} }}
where
G
{\displaystyle G}
is the lower triangular part of
1
a
0
A
{\displaystyle {\frac {1}{a_{0}}}A}
.
A
− − -->
1
=
1
α α -->
0
(
B
B
T
− − -->
C
C
T
)
{\displaystyle A^{-1}={\frac {1}{\alpha _{0}}}(BB^{\operatorname {T} }-CC^{\operatorname {T} })}
where
B
{\displaystyle B}
and
C
{\displaystyle C}
are lower triangular Toeplitz matrices and
C
{\displaystyle C}
is a strictly lower triangular matrix.[ 7]
Discrete convolution
The convolution operation can be constructed as a matrix multiplication, where one of the inputs is converted into a Toeplitz matrix. For example, the convolution of
h
{\displaystyle h}
and
x
{\displaystyle x}
can be formulated as:
y
=
h
∗ ∗ -->
x
=
[
h
1
0
⋯ ⋯ -->
0
0
h
2
h
1
⋮ ⋮ -->
⋮ ⋮ -->
h
3
h
2
⋯ ⋯ -->
0
0
⋮ ⋮ -->
h
3
⋯ ⋯ -->
h
1
0
h
m
− − -->
1
⋮ ⋮ -->
⋱ ⋱ -->
h
2
h
1
h
m
h
m
− − -->
1
⋮ ⋮ -->
h
2
0
h
m
⋱ ⋱ -->
h
m
− − -->
2
⋮ ⋮ -->
0
0
⋯ ⋯ -->
h
m
− − -->
1
h
m
− − -->
2
⋮ ⋮ -->
⋮ ⋮ -->
h
m
h
m
− − -->
1
0
0
0
⋯ ⋯ -->
h
m
]
[
x
1
x
2
x
3
⋮ ⋮ -->
x
n
]
{\displaystyle y=h\ast x={\begin{bmatrix}h_{1}&0&\cdots &0&0\\h_{2}&h_{1}&&\vdots &\vdots \\h_{3}&h_{2}&\cdots &0&0\\\vdots &h_{3}&\cdots &h_{1}&0\\h_{m-1}&\vdots &\ddots &h_{2}&h_{1}\\h_{m}&h_{m-1}&&\vdots &h_{2}\\0&h_{m}&\ddots &h_{m-2}&\vdots \\0&0&\cdots &h_{m-1}&h_{m-2}\\\vdots &\vdots &&h_{m}&h_{m-1}\\0&0&0&\cdots &h_{m}\end{bmatrix}}{\begin{bmatrix}x_{1}\\x_{2}\\x_{3}\\\vdots \\x_{n}\end{bmatrix}}}
y
T
=
[
h
1
h
2
h
3
⋯ ⋯ -->
h
m
− − -->
1
h
m
]
[
x
1
x
2
x
3
⋯ ⋯ -->
x
n
0
0
0
⋯ ⋯ -->
0
0
x
1
x
2
x
3
⋯ ⋯ -->
x
n
0
0
⋯ ⋯ -->
0
0
0
x
1
x
2
x
3
… … -->
x
n
0
⋯ ⋯ -->
0
⋮ ⋮ -->
⋮ ⋮ -->
⋮ ⋮ -->
⋮ ⋮ -->
⋮ ⋮ -->
⋮ ⋮ -->
⋮ ⋮ -->
0
⋯ ⋯ -->
0
0
x
1
⋯ ⋯ -->
x
n
− − -->
2
x
n
− − -->
1
x
n
0
0
⋯ ⋯ -->
0
0
0
x
1
⋯ ⋯ -->
x
n
− − -->
2
x
n
− − -->
1
x
n
]
.
{\displaystyle y^{T}={\begin{bmatrix}h_{1}&h_{2}&h_{3}&\cdots &h_{m-1}&h_{m}\end{bmatrix}}{\begin{bmatrix}x_{1}&x_{2}&x_{3}&\cdots &x_{n}&0&0&0&\cdots &0\\0&x_{1}&x_{2}&x_{3}&\cdots &x_{n}&0&0&\cdots &0\\0&0&x_{1}&x_{2}&x_{3}&\ldots &x_{n}&0&\cdots &0\\\vdots &&\vdots &\vdots &\vdots &&\vdots &\vdots &&\vdots \\0&\cdots &0&0&x_{1}&\cdots &x_{n-2}&x_{n-1}&x_{n}&0\\0&\cdots &0&0&0&x_{1}&\cdots &x_{n-2}&x_{n-1}&x_{n}\end{bmatrix}}.}
This approach can be extended to compute autocorrelation , cross-correlation , moving average etc.
Infinite Toeplitz matrix
A bi-infinite Toeplitz matrix (i.e. entries indexed by
Z
× × -->
Z
{\displaystyle \mathbb {Z} \times \mathbb {Z} }
)
A
{\displaystyle A}
induces a linear operator on
ℓ ℓ -->
2
{\displaystyle \ell ^{2}}
.
A
=
[
⋮ ⋮ -->
⋮ ⋮ -->
⋮ ⋮ -->
⋮ ⋮ -->
⋯ ⋯ -->
a
0
a
− − -->
1
a
− − -->
2
a
− − -->
3
⋯ ⋯ -->
⋯ ⋯ -->
a
1
a
0
a
− − -->
1
a
− − -->
2
⋯ ⋯ -->
⋯ ⋯ -->
a
2
a
1
a
0
a
− − -->
1
⋯ ⋯ -->
⋯ ⋯ -->
a
3
a
2
a
1
a
0
⋯ ⋯ -->
⋮ ⋮ -->
⋮ ⋮ -->
⋮ ⋮ -->
⋮ ⋮ -->
]
.
{\displaystyle A={\begin{bmatrix}&\vdots &\vdots &\vdots &\vdots \\\cdots &a_{0}&a_{-1}&a_{-2}&a_{-3}&\cdots \\\cdots &a_{1}&a_{0}&a_{-1}&a_{-2}&\cdots \\\cdots &a_{2}&a_{1}&a_{0}&a_{-1}&\cdots \\\cdots &a_{3}&a_{2}&a_{1}&a_{0}&\cdots \\&\vdots &\vdots &\vdots &\vdots \end{bmatrix}}.}
The induced operator is bounded if and only if the coefficients of the Toeplitz matrix
A
{\displaystyle A}
are the Fourier coefficients of some essentially bounded function
f
{\displaystyle f}
.
In such cases,
f
{\displaystyle f}
is called the symbol of the Toeplitz matrix
A
{\displaystyle A}
, and the spectral norm of the Toeplitz matrix
A
{\displaystyle A}
coincides with the
L
∞ ∞ -->
{\displaystyle L^{\infty }}
norm of its symbol. The proof is easy to establish and can be found as Theorem 1.1 of.[ 8]
See also
Circulant matrix , a square Toeplitz matrix with the additional property that
a
i
=
a
i
+
n
{\displaystyle a_{i}=a_{i+n}}
Hankel matrix , an "upside down" (i.e., row-reversed) Toeplitz matrix
Szegő limit theorems – Determinant of large Toeplitz matrices
Toeplitz operator – compression of a multiplication operator on the circle to the Hardy spacePages displaying wikidata descriptions as a fallback
Notes
References
Bojanczyk, A. W.; Brent, R. P.; de Hoog, F. R.; Sweet, D. R. (1995), "On the stability of the Bareiss and related Toeplitz factorization algorithms", SIAM Journal on Matrix Analysis and Applications , 16 : 40– 57, arXiv :1004.5510 , doi :10.1137/S0895479891221563 , S2CID 367586
Böttcher, Albrecht; Grudsky, Sergei M. (2012), Toeplitz Matrices, Asymptotic Linear Algebra, and Functional Analysis , Birkhäuser, ISBN 978-3-0348-8395-5
Brent, R. P. (1999), "Stability of fast algorithms for structured linear systems", in Kailath, T.; Sayed, A. H. (eds.), Fast Reliable Algorithms for Matrices with Structure , SIAM , pp. 103– 116, doi :10.1137/1.9781611971354.ch4 , hdl :1885/40746 , S2CID 13905858
Chan, R. H.-F.; Jin, X.-Q. (2007), An Introduction to Iterative Toeplitz Solvers , SIAM , doi :10.1137/1.9780898718850 , ISBN 978-0-89871-636-8
Chandrasekeran, S.; Gu, M.; Sun, X.; Xia, J.; Zhu, J. (2007), "A superfast algorithm for Toeplitz systems of linear equations", SIAM Journal on Matrix Analysis and Applications , 29 (4): 1247– 66, CiteSeerX 10.1.1.116.3297 , doi :10.1137/040617200
Chen, W. W.; Hurvich, C. M.; Lu, Y. (2006), "On the correlation matrix of the discrete Fourier transform and the fast solution of large Toeplitz systems for long-memory time series", Journal of the American Statistical Association , 101 (474): 812– 822, CiteSeerX 10.1.1.574.4394 , doi :10.1198/016214505000001069 , S2CID 55893963
Hayes, Monson H. (1996), Statistical digital signal processing and modeling , Wiley, ISBN 0-471-59431-8
Krishna, H.; Wang, Y. (1993), "The Split Levinson Algorithm is weakly stable" , SIAM Journal on Numerical Analysis , 30 (5): 1498– 1508, doi :10.1137/0730078
Monahan, J. F. (2011), Numerical Methods of Statistics , Cambridge University Press , doi :10.1017/CBO9780511977176 , ISBN 978-1-139-08211-2
Mukherjee, Bishwa Nath; Maiti, Sadhan Samar (1988), "On some properties of positive definite Toeplitz matrices and their possible applications" (PDF) , Linear Algebra and Its Applications , 102 : 211– 240, doi :10.1016/0024-3795(88)90326-6
Press, W. H.; Teukolsky, S. A.; Vetterling, W. T.; Flannery, B. P. (2007), Numerical Recipes: The Art of Scientific Computing (3rd ed.), Cambridge University Press , ISBN 978-0-521-88068-8
Stewart, M. (2003), "A superfast Toeplitz solver with improved numerical stability", SIAM Journal on Matrix Analysis and Applications , 25 (3): 669– 693, doi :10.1137/S089547980241791X , S2CID 15717371
Yang, Zai; Xie, Lihua; Stoica, Petre (2016), "Vandermonde decomposition of multilevel Toeplitz matrices with application to multidimensional super-resolution", IEEE Transactions on Information Theory , 62 (6): 3685– 3701, arXiv :1505.02510 , doi :10.1109/TIT.2016.2553041 , S2CID 6291005
Further reading
Bareiss, E. H. (1969), "Numerical solution of linear equations with Toeplitz and vector Toeplitz matrices", Numerische Mathematik , 13 (5): 404– 424, doi :10.1007/BF02163269 , S2CID 121761517
Goldreich, O. ; Tal, A. (2018), "Matrix rigidity of random Toeplitz matrices", Computational Complexity , 27 (2): 305– 350, doi :10.1007/s00037-016-0144-9 , S2CID 253641700
Golub, G. H. ; van Loan, C. F. (1996), Matrix Computations , Johns Hopkins University Press , §4.7—Toeplitz and Related Systems, ISBN 0-8018-5413-X , OCLC 34515797
Gray, R. M., Toeplitz and Circulant Matrices: A Review (PDF) , Now Publishers, doi :10.1561/0100000006
Noor, F.; Morgera, S. D. (1992), "Construction of a Hermitian Toeplitz matrix from an arbitrary set of eigenvalues", IEEE Transactions on Signal Processing , 40 (8): 2093– 4, Bibcode :1992ITSP...40.2093N , doi :10.1109/78.149978
Pan, Victor Y. (2001), Structured Matrices and Polynomials: unified superfast algorithms , Birkhäuser , ISBN 978-0817642402
Ye, Ke; Lim, Lek-Heng (2016), "Every matrix is a product of Toeplitz matrices", Foundations of Computational Mathematics , 16 (3): 577– 598, arXiv :1307.5132 , doi :10.1007/s10208-015-9254-z , S2CID 254166943