Companion matrix

In linear algebra, the Frobenius companion matrix of the monic polynomial is the square matrix defined as

Some authors use the transpose of this matrix, , which is more convenient for some purposes such as linear recurrence relations (see below).

is defined from the coefficients of , while the characteristic polynomial as well as the minimal polynomial of are equal to .[1] In this sense, the matrix and the polynomial are "companions".

Similarity to companion matrix

Any matrix A with entries in a field F has characteristic polynomial , which in turn has companion matrix . These matrices are related as follows.

The following statements are equivalent:

  • A is similar over F to , i.e. A can be conjugated to its companion matrix by matrices in GLn(F);
  • the characteristic polynomial coincides with the minimal polynomial of A , i.e. the minimal polynomial has degree n;
  • the linear mapping makes a cyclic -module, having a basis of the form ; or equivalently as -modules.

If the above hold, one says that A is non-derogatory.

Not every square matrix is similar to a companion matrix, but every square matrix is similar to a block diagonal matrix made of companion matrices. If we also demand that the polynomial of each diagonal block divides the next one, they are uniquely determined by A, and this gives the rational canonical form of A.

Diagonalizability

The roots of the characteristic polynomial are the eigenvalues of . If there are n distinct eigenvalues , then is diagonalizable as , where D is the diagonal matrix and V is the Vandermonde matrix corresponding to the λ's: Indeed, a reasonably hard computation shows that the transpose has eigenvectors with , which follows from . Thus, its diagonalizing change of basis matrix is , meaning , and taking the transpose of both sides gives .

We can read the eigenvectors of with from the equation : they are the column vectors of the inverse Vandermonde matrix . This matrix is known explicitly, giving the eignevectors , with coordinates equal to the coefficients of the Lagrange polynomials Alternatively, the scaled eigenvectors have simpler coefficients.

If has multiple roots, then is not diagonalizable. Rather, the Jordan canonical form of contains one Jordan block for each distinct root; if the multiplicity of the root is m, then the block is an m × m matrix with on the diagonal and 1 in the entries just above the diagonal. in this case, V becomes a confluent Vandermonde matrix.[2]

Linear recursive sequences

A linear recursive sequence defined by for has the characteristic polynomial , whose transpose companion matrix generates the sequence: The vector is an eigenvector of this matrix, where the eigenvalue is a root of . Setting the initial values of the sequence equal to this vector produces a geometric sequence which satisfies the recurrence. In the case of n distinct eigenvalues, an arbitrary solution can be written as a linear combination of such geometric solutions, and the eigenvalues of largest complex norm give an asymptotic approximation.

From linear ODE to first-order linear ODE system

Similarly to the above case of linear recursions, consider a homogeneous linear ODE of order n for the scalar function : This can be equivalently described as a coupled system of homogeneous linear ODE of order 1 for the vector function : where is the transpose companion matrix for the characteristic polynomial Here the coefficients may be also functions, not just constants.

If is diagonalizable, then a diagonalizing change of basis will transform this into a decoupled system equivalent to one scalar homogeneous first-order linear ODE in each coordinate.

An inhomogeneous equation is equivalent to the system: with the inhomogeneity term .

Again, a diagonalizing change of basis will transform this into a decoupled system of scalar inhomogeneous first-order linear ODEs.

Cyclic shift matrix

In the case of , when the eigenvalues are the complex roots of unity, the companion matrix and its transpose both reduce to Sylvester's cyclic shift matrix, a circulant matrix.

Multiplication map on a simple field extension

Consider a polynomial with coefficients in a field , and suppose is irreducible in the polynomial ring . Then adjoining a root of produces a field extension , which is also a vector space over with standard basis . Then the -linear multiplication mapping

defined by

has an n × n matrix with respect to the standard basis. Since and , this is the companion matrix of : Assuming this extension is separable (for example if has characteristic zero or is a finite field), has distinct roots with , so that and it has splitting field . Now is not diagonalizable over ; rather, we must extend it to an -linear map on , a vector space over with standard basis , containing vectors . The extended mapping is defined by .

The matrix is unchanged, but as above, it can be diagonalized by matrices with entries in : for the diagonal matrix and the Vandermonde matrix V corresponding to . The explicit formula for the eigenvectors (the scaled column vectors of the inverse Vandermonde matrix ) can be written as: where are the coefficients of the scaled Lagrange polynomial

See also

Notes

  1. ^ Horn, Roger A.; Charles R. Johnson (1985). Matrix Analysis. Cambridge, UK: Cambridge University Press. pp. 146–147. ISBN 0-521-30586-1. Retrieved 2010-02-10.
  2. ^ Turnbull, H. W.; Aitken, A. C. (1961). An Introduction to the Theory of Canonical Matrices. New York: Dover. p. 60. ISBN 978-0486441689.

Read other articles:

Kristen SchaalSchaal pada 2010 Comic ConLahir24 Januari 1978 (umur 46)Longmont, Colorado, A.S.MediaStand-up, televisi, film, bukuKebangsaanAmerika SerikatTahun aktif2001–sekarangGenreKomedi observasi, Satire/satire politikKarya terkenal dan peranMel dalam Flight of the Conchordskontributor dalam The Daily ShowLouise Belcher on Bob's Burgers Kristen Schaal (lahir 24 Januari 1978) adalah seorang pemeran berkebangsaan Amerika Serikat. Filmografi Year Title Role Notes 2001 Kate & Leopo...

 

Schwissel Lambang kebesaranLetak Schwissel di Segeberg NegaraJermanNegara bagianSchleswig-HolsteinKreisSegeberg Municipal assoc.Leezen Pemerintahan • MayorJürgen Hildebrandt-MöllerLuas • Total4,44 km2 (171 sq mi)Ketinggian42 m (138 ft)Populasi (2013-12-31)[1] • Total258 • Kepadatan0,58/km2 (1,5/sq mi)Zona waktuWET/WMPET (UTC+1/+2)Kode pos23795Kode area telepon04551Pelat kendaraanSESitus webwww.amt-lee...

 

Feidias menunjukkan dekorasi Parthenon kepada kawan-kawannya, (1868) oleh Sir Lawrence Alma-Tadema. Feidias (Φειδίας; circa 480 SM– 430 SM), adalah seorang pematung, pelukis, dan arsitek Yunani kuno. Dia hidup pada abad ke-5 SM, dan disebut-sebut sebagai pematung terhebat pada masa Yunani Klasik:[1] Patung Zeus di Oympia buatan Feidias merupakan salah satu dari Tujuh Keajaiban Dunia Kuno. Feidias juga merancang pastung dewi Athena di Akropolis Athena, yang dinamai Athena Part...

Ice hockey team in Richmond, VirginiaRichmond RobinsCityRichmond, VirginiaLeagueAmerican Hockey LeagueOperated1971–1976Home arenaRichmond ColiseumAffiliatePhiladelphia FlyersFranchise history1928–1971Quebec Aces1971–1976Richmond Robins The Richmond Robins were a professional ice hockey team based in Richmond, Virginia. They were a member of the American Hockey League for five seasons from 1971–72 to 1975–76. Their cross-state rivals in the AHL were the Virginia Wings. The Robins wer...

 

Room found at broadcast facilities and television stations This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Transmission control room – news · newspapers · books · scholar · JSTOR (January 2024) (Learn how and when to remove this template message) Transmission suite redirects here. For the album by 808 State,...

 

Questa voce o sezione sull'argomento Seconda guerra mondiale è priva o carente di note e riferimenti bibliografici puntuali. Sebbene vi siano una bibliografia e/o dei collegamenti esterni, manca la contestualizzazione delle fonti con note a piè di pagina o altri riferimenti precisi che indichino puntualmente la provenienza delle informazioni. Puoi migliorare questa voce citando le fonti più precisamente. Segui i suggerimenti del progetto di riferimento. Questa voce sull'argoment...

Indian journalist and reformer (1873–1932) Not to be confused with Vakkom Abdul Khader. Vakkom Mohammed Abdul Khader MoulaviBornMohammed Abdul Khader(1873-12-28)28 December 1873Vakkom, Kingdom of Travancore(present day Thiruvananthapuram, Kerala, India)Died31 October 1932(1932-10-31) (aged 58)Kingdom of Travancore, British India(present day Kerala, India)NationalityIndia (former Travancore state)Known forIslamic leader, Freedom fighter, Founder and Publisher of Swadeshabhimani, Sc...

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada November 2022. Anjali SudAnjali Sud di konferensi Collision pada 2018Lahir13 Agustus 1983 (umur 40)Detroit, MichiganKebangsaanAmerika SerikatPendidikanPhillips Andover AcademyWharton School of the University of Pennsylvania Harvard Business SchoolPekerjaanCEO V...

 

† Палеопропитеки Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:СинапсидыКласс:�...

German missionary, linguist, and social worker (1879-1957) Helene Bresslau SchweitzerHelene and her husband AlbertBornHelene Bresslau(1879-01-25)25 January 1879Berlin, GermanyDied1 June 1957(1957-06-01) (aged 78)Zurich, Switzerland[1]EducationProtestant Deaconess SocietyKnown forCo-founding the Albert Schweitzer Hospital in Lambaréné, GabonSpouseAlbert SchweitzerScientific careerFieldsMedicine, Nursing, Missionary Helene Bresslau Schweitzer (25 January 1879 – 1 June 1957...

 

City in Utah, United States City in Utah, United StatesPrice, UtahCityLocation in Carbon County and the state of UtahLocation of Utah in the United StatesCoordinates: 39°36′0″N 110°48′24″W / 39.60000°N 110.80667°W / 39.60000; -110.80667CountryUnited StatesStateUtahCountyCarbonSettled1879Founded byCaleb Baldwin RhoadesNamed forBishop William PriceArea[1] • Total5.04 sq mi (13.04 km2) • Land5.04 sq mi (...

 

For other ships with the same name, see USS Jouett. USS Jouett (CG-29) in 1992 History United States NameJouett NamesakeJames Edward Jouett Ordered20 September 1961 BuilderPuget Sound Naval Shipyard Laid down25 September 1962 Launched30 June 1964 Sponsored byMrs. S. J. Ervin, Jr Acquired23 February 1967 Commissioned3 December 1966 Decommissioned28 January 1994 ReclassifiedCG-29 on 30 June 1975 Stricken28 January 1994 MottoEternal Vigilance FateSunk as target, 10 August 2007 Badge General char...

Piper Aircraft, Inc.SebelumnyaTaylor Brothers Aircraft Manufacturing Company (1927–1928)Taylor Brothers Aircraft Corporation (1928–1930)Taylor Aircraft Company (1930–1937)JenisBadan usaha milik negaraIndustriPenerbangan umumDidirikan1927; 97 tahun lalu (1927) di Rochester, New York, Amerika SerikatPendiriWilliam PiperClarence TaylorGordon TaylorKantorpusatVero Beach, Florida,Amerika SerikatTokohkunciSimon Caldecott (CEO)John Calcagno (CFO)ProdukPesawat terbang ringanPemilikKementer...

 

American college basketball season 1973–74 Notre Dame Fighting Irish men's basketballNCAA Men's Division I Tournament, 3rd placeConferenceIndependentRankingCoachesNo. 3APNo. 5Record26–3Head coachDigger Phelps (3rd season)Assistant coachDick DiBiaso (3rd season)Captains Gary Novak (2nd year) John Shumate (2nd year) Home arenaJoyce CenterSeasons← 1972–731974–75 → 1973–74 NCAA Division I men's basketball independents standings vte Conf Overall ...

 

River in India and Pakistan Ravi RiverIravati RiverBoats on Ravi River, LahoreRavi location [1]LocationCountryIndia, PakistanStateHimachal Pradesh, Punjab (India), Punjab (Pakistan)Physical characteristicsSourceHanuman Tibba • locationFrom Bara Bhangal, Kangra, Himachal Pradesh, India MouthChenab River • locationNear Sarai Sidhu, Punjab, PakistanLength720 km (450 mi)Basin sizeIndia and PakistanDischarge  • average267....

Official coat of arms of the German city state of Berlin Coat of arms of BerlinVersionsEscutcheon-only version ArmigerCity of BerlinCrestA city coronet Or with five leaves and a gateShieldArgent a bear rampant Sable langued and armed GulesUseThe state logo may be used by the general public while the coat of arms proper is only eligible for use with authorities. The coat of arms of Berlin is used by the German city state as well as the city itself. Introduced in 1954 for West Berlin, it shows ...

 

English writer and art critic (1819–1900) This article is about the art critic. For the painting by Millais, see John Ruskin (Millais). For the Canadian media personality, see Nardwuar. John RuskinRuskin in 1863Born(1819-02-08)8 February 1819London, EnglandDied20 January 1900(1900-01-20) (aged 80)Coniston, Lancashire, EnglandAlma mater Christ Church, Oxford King's College London Notable work Modern Painters 5 vols. (1843–1860) The Seven Lamps of Architecture (1849) The Stones of...

 

PT Bank Syariah MandiriNama dagangMandiri SyariahJenisPublik/BUMNIndustriKeuangan dan komponennyaNasibDigabung ke dalam Bank Rakyat Indonesia Syariah menjadi Bank Syariah IndonesiaPenerusBank Syariah IndonesiaDidirikan1955 di Jakarta, IndonesiaDitutup1 Februari 2021KantorpusatWisma Mandiri I, Jakarta, IndonesiaTokohkunciAgus Sudiarto (Presiden Direktur)ProdukKeuanganSitus webwww.syariahmandiri.co.id Bank Syariah Mandiri (beroperasi dengan nama Mandiri Syariah) adalah lembaga perbankan di Indo...

Disambiguazione – Se stai cercando la definizione di azienda nel diritto italiano, vedi Azienda (ordinamento italiano). Questa voce o sezione sugli argomenti diritto e economia ha un'ottica geograficamente limitata. Contribuisci ad ampliarla o proponi le modifiche in discussione. Se la voce è approfondita, valuta se sia preferibile renderla una voce secondaria, dipendente da una più generale. Segui i suggerimenti dei progetti di riferimento 1, 2. Questa voce o sezione sull'argo...

 

American poet and activist (born 1939) For other uses, see Ed Sanders (disambiguation). Ed SandersSanders reading at the House Divided poetry event, Cooper Union, April 2017BornEdward Sanders (1939-08-17) August 17, 1939 (age 84)Kansas City, Missouri, U.S.EducationNew York UniversityOccupations Poet author publisher social activist environmentalist musician Years active1958–presentKnown forThe FugsPoem from Jail, City Lights Books, 1963Woodstock JournalSpouse Miriam Sanders&#...