Roots of unity can be defined in any field. If the characteristic of the field is zero, the roots are complex numbers that are also algebraic integers. For fields with a positive characteristic, the roots belong to a finite field, and, conversely, every nonzero element of a finite field is a root of unity. Any algebraically closed field contains exactly nnth roots of unity, except when n is a multiple of the (positive) characteristic of the field.
General definition
An nth root of unity, where n is a positive integer, is a number z satisfying the equation[1][2]
Unless otherwise specified, the roots of unity may be taken to be complex numbers (including the number 1, and the number −1 if n is even, which are complex with a zero imaginary part), and in this case, the nth roots of unity are[3]
However, the defining equation of roots of unity is meaningful over any field (and even over any ring) F, and this allows considering roots of unity in F. Whichever is the field F, the roots of unity in F are either complex numbers, if the characteristic of F is 0, or, otherwise, belong to a finite field. Conversely, every nonzero element in a finite field is a root of unity in that field. See Root of unity modulo n and Finite field for further details.
An nth root of unity is said to be primitive if it is not an mth root of unity for some smaller m, that is if[4][5]
If n is a prime number, then all nth roots of unity, except 1, are primitive.[6]
In the above formula in terms of exponential and trigonometric functions, the primitive nth roots of unity are those for which k and n are coprime integers.
Subsequent sections of this article will comply with complex roots of unity. For the case of roots of unity in fields of nonzero characteristic, see Finite field § Roots of unity. For the case of roots of unity in rings of modular integers, see Root of unity modulo n.
Elementary properties
Every nth root of unity z is a primitive ath root of unity for some a ≤ n, which is the smallest positive integer such that za = 1.
Any integer power of an nth root of unity is also an nth root of unity,[7] as
This is also true for negative exponents. In particular, the reciprocal of an nth root of unity is its complex conjugate, and is also an nth root of unity:[8]
If z is an nth root of unity and a ≡ b (mod n) then za = zb. Indeed, by the definition of congruence modulo n, a = b + kn for some integer k, and hence
Therefore, given a power za of z, one has za = zr, where 0 ≤ r < n is the remainder of the Euclidean division of a by n.
Let z be a primitive nth root of unity. Then the powers z, z2, ..., zn−1, zn = z0 = 1 are nth roots of unity and are all distinct. (If za = zb where 1 ≤ a < b ≤ n, then zb−a = 1, which would imply that z would not be primitive.) This implies that z, z2, ..., zn−1, zn = z0 = 1 are all of the nth roots of unity, since an nth-degreepolynomial equation over a field (in this case the field of complex numbers) has at most n solutions.
From the preceding, it follows that, if z is a primitive nth root of unity, then if and only if
If z is not primitive then implies but the converse may be false, as shown by the following example. If n = 4, a non-primitive nth root of unity is z = –1, and one has , although
Let z be a primitive nth root of unity. A power w = zk of z is a primitive ath root of unity for
where is the greatest common divisor of n and k. This results from the fact that ka is the smallest multiple of k that is also a multiple of n. In other words, ka is the least common multiple of k and n. Thus
Thus, if k and n are coprime, zk is also a primitive nth root of unity, and therefore there are φ(n) distinct primitive nth roots of unity (where φ is Euler's totient function). This implies that if n is a prime number, all the roots except +1 are primitive.
In other words, if R(n) is the set of all nth roots of unity and P(n) is the set of primitive ones, R(n) is a disjoint union of the P(n):
where the notation means that d goes through all the positive divisors of n, including 1 and n.
Since the cardinality of R(n) is n, and that of P(n) is φ(n), this demonstrates the classical formula
Group properties
Group of all roots of unity
The product and the multiplicative inverse of two roots of unity are also roots of unity. In fact, if xm = 1 and yn = 1, then (x−1)m = 1, and (xy)k = 1, where k is the least common multiple of m and n.
For an integer n, the product and the multiplicative inverse of two nth roots of unity are also nth roots of unity. Therefore, the nth roots of unity form an abelian group under multiplication.
Given a primitive nth root of unity ω, the other nth roots are powers of ω. This means that the group of the nth roots of unity is a cyclic group. It is worth remarking that the term of cyclic group originated from the fact that this group is a subgroup of the circle group.
Galois group of the primitive nth roots of unity
Let be the field extension of the rational numbers generated over by a primitive nth root of unity ω. As every nth root of unity is a power of ω, the field contains all nth roots of unity, and is a Galois extension of
If k is an integer, ωk is a primitive nth root of unity if and only if k and n are coprime. In this case, the map
induces an automorphism of , which maps every nth root of unity to its kth power. Every automorphism of is obtained in this way, and these automorphisms form the Galois group of over the field of the rationals.
The rules of exponentiation imply that the composition of two such automorphisms is obtained by multiplying the exponents. It follows that the map
The real part of the primitive roots of unity are related to one another as roots of the minimal polynomial of The roots of the minimal polynomial are just twice the real part; these roots form a cyclic Galois group.
Setting x = 2π/n gives a primitive nth root of unity – one gets
but
for k = 1, 2, …, n − 1. In other words,
is a primitive nth root of unity.
This formula shows that in the complex plane the nth roots of unity are at the vertices of a regular n-sided polygon inscribed in the unit circle, with one vertex at 1 (see the plots for n = 3 and n = 5 on the right). This geometric fact accounts for the term "cyclotomic" in such phrases as cyclotomic field and cyclotomic polynomial; it is from the Greek roots "cyclo" (circle) plus "tomos" (cut, divide).
which is valid for all real x, can be used to put the formula for the nth roots of unity into the form
It follows from the discussion in the previous section that this is a primitive nth-root if and only if the fraction k/n is in lowest terms; that is, that k and n are coprime. An irrational number that can be expressed as the real part of the root of unity; that is, as , is called a trigonometric number.
Algebraic expression
The nth roots of unity are, by definition, the roots of the polynomialxn − 1, and are thus algebraic numbers. As this polynomial is not irreducible (except for n = 1), the primitive nth roots of unity are roots of an irreducible polynomial (over the integers) of lower degree, called the nth cyclotomic polynomial, and often denoted Φn. The degree of Φn is given by Euler's totient function, which counts (among other things) the number of primitive nth roots of unity.[9] The roots of Φn are exactly the primitive nth roots of unity.
Galois theory can be used to show that the cyclotomic polynomials may be conveniently solved in terms of radicals. (The trivial form is not convenient, because it contains non-primitive roots, such as 1, which are not roots of the cyclotomic polynomial, and because it does not give the real and imaginary parts separately.) This means that, for each positive integer n, there exists an expression built from integers by root extractions, additions, subtractions, multiplications, and divisions (and nothing else), such that the primitive nth roots of unity are exactly the set of values that can be obtained by choosing values for the root extractions (k possible values for a kth root). (For more details see § Cyclotomic fields, below.)
If z is a primitive nth root of unity, the same is true for 1/z, and is twice the real part of z. In other words, Φn is a reciprocal polynomial, the polynomial that has r as a root may be deduced from Φn by the standard manipulation on reciprocal polynomials, and the primitive nth roots of unity may be deduced from the roots of by solving the quadratic equation That is, the real part of the primitive root is and its imaginary part is
The polynomial is an irreducible polynomial whose roots are all real. Its degree is a power of two, if and only if n is a product of a power of two by a product (possibly empty) of distinct Fermat primes, and the regular n-gon is constructible with compass and straightedge. Otherwise, it is solvable in radicals, but one are in the casus irreducibilis, that is, every expression of the roots in terms of radicals involves nonreal radicals.
Explicit expressions in low degrees
For n = 1, the cyclotomic polynomial is Φ1(x) = x − 1 Therefore, the only primitive first root of unity is 1, which is a non-primitive nth root of unity for every n > 1.
As Φ2(x) = x + 1, the only primitive second (square) root of unity is −1, which is also a non-primitive nth root of unity for every even n > 2. With the preceding case, this completes the list of real roots of unity.
As Φ3(x) = x2 + x + 1, the primitive third (cube) roots of unity, which are the roots of this quadratic polynomial, are
As Φ4(x) = x2 + 1, the two primitive fourth roots of unity are i and −i.
As Φ5(x) = x4 + x3 + x2 + x + 1, the four primitive fifth roots of unity are the roots of this quartic polynomial, which may be explicitly solved in terms of radicals, giving the roots where may take the two values 1 and −1 (the same value in the two occurrences).
As Φ6(x) = x2 − x + 1, there are two primitive sixth roots of unity, which are the negatives (and also the square roots) of the two primitive cube roots:
As 7 is not a Fermat prime, the seventh roots of unity are the first that require cube roots. There are 6 primitive seventh roots of unity, which are pairwise complex conjugate. The sum of a root and its conjugate is twice its real part. These three sums are the three real roots of the cubic polynomial and the primitive seventh roots of unity are where r runs over the roots of the above polynomial. As for every cubic polynomial, these roots may be expressed in terms of square and cube roots. However, as these three roots are all real, this is casus irreducibilis, and any such expression involves non-real cube roots.
As Φ8(x) = x4 + 1, the four primitive eighth roots of unity are the square roots of the primitive fourth roots, ± i. They are thus
See Heptadecagon for the real part of a 17th root of unity.
Periodicity
If z is a primitive nth root of unity, then the sequence of powers
… , z−1, z0, z1, …
is n-periodic (because z j + n = z jz n = z j for all values of j), and the n sequences of powers
sk: … , z k⋅(−1), z k⋅0, z k⋅1, …
for k = 1, … , n are all n-periodic (because z k⋅(j + n) = z k⋅j). Furthermore, the set {s1, … , sn} of these sequences is a basis of the linear space of all n-periodic sequences. This means that anyn-periodic sequence of complex numbers
… , x−1 , x0 , x1, …
can be expressed as a linear combination of powers of a primitive nth root of unity:
for some complex numbers X1, … , Xn and every integer j.
Let SR(n) be the sum of all the nth roots of unity, primitive or not. Then
This is an immediate consequence of Vieta's formulas. In fact, the nth roots of unity being the roots of the polynomial Xn – 1, their sum is the coefficient of degree n – 1, which is either 1 or 0 according whether n = 1 or n > 1.
Alternatively, for n = 1 there is nothing to prove, and for n > 1 there exists a root z ≠ 1 – since the set S of all the nth roots of unity is a group, zS = S, so the sum satisfies z SR(n) = SR(n), whence SR(n) = 0.
Let SP(n) be the sum of all the primitive nth roots of unity. Then
In the section Elementary properties, it was shown that if R(n) is the set of all nth roots of unity and P(n) is the set of primitive ones, R(n) is a disjoint union of the P(n):
and thus the inverse of U is simply the complex conjugate. (This fact was first noted by Gauss when solving the problem of trigonometric interpolation.) The straightforward application of U or its inverse to a given vector requires O(n2) operations. The fast Fourier transform algorithms reduces the number of operations further to O(n log n).
are precisely the nth roots of unity, each with multiplicity 1. The nth cyclotomic polynomial is defined by the fact that its zeros are precisely the primitiventh roots of unity, each with multiplicity 1.
where z1, z2, z3, …, zφ(n) are the primitive nth roots of unity, and φ(n) is Euler's totient function. The polynomial Φn(z) has integer coefficients and is an irreducible polynomial over the rational numbers (that is, it cannot be written as the product of two positive-degree polynomials with rational coefficients).[9] The case of prime n, which is easier than the general assertion, follows by applying Eisenstein's criterion to the polynomial
If p is a prime number, then all the pth roots of unity except 1 are primitive pth roots. Therefore,[6]
Substituting any positive integer ≥ 2 for z, this sum becomes a base zrepunit. Thus a necessary (but not sufficient) condition for a repunit to be prime is that its length be prime.
Note that, contrary to first appearances, not all coefficients of all cyclotomic polynomials are 0, 1, or −1. The first exception is Φ105. It is not a surprise it takes this long to get an example, because the behavior of the coefficients depends not so much on n as on how many odd prime factors appear in n. More precisely, it can be shown that if n has 1 or 2 odd prime factors (for example, n = 150) then the nth cyclotomic polynomial only has coefficients 0, 1 or −1. Thus the first conceivable n for which there could be a coefficient besides 0, 1, or −1 is a product of the three smallest odd primes, and that is 3 ⋅ 5 ⋅ 7 = 105. This by itself doesn't prove the 105th polynomial has another coefficient, but does show it is the first one which even has a chance of working (and then a computation of the coefficients shows it does). A theorem of Schur says that there are cyclotomic polynomials with coefficients arbitrarily large in absolute value. In particular, if where are odd primes, and t is odd, then 1 − t occurs as a coefficient in the nth cyclotomic polynomial.[11]
Many restrictions are known about the values that cyclotomic polynomials can assume at integer values. For example, if p is prime, then d ∣ Φp(d) if and only if d ≡ 1 (mod p).
Cyclotomic polynomials are solvable in radicals, as roots of unity are themselves radicals. Moreover, there exist more informative radical expressions for nth roots of unity with the additional property[12] that every value of the expression obtained by choosing values of the radicals (for example, signs of square roots) is a primitive nth root of unity. This was already shown by Gauss in 1797.[13] Efficient algorithms exist for calculating such expressions.[14]
Cyclic groups
The nth roots of unity form under multiplication a cyclic group of ordern, and in fact these groups comprise all of the finite subgroups of the multiplicative group of the complex number field. A generator for this cyclic group is a primitive nth root of unity.
The nth roots of unity form an irreducible representation of any cyclic group of order n. The orthogonality relationship also follows from group-theoretic principles as described in Character group.
The roots of unity appear as entries of the eigenvectors of any circulant matrix; that is, matrices that are invariant under cyclic shifts, a fact that also follows from group representation theory as a variant of Bloch's theorem.[15][page needed] In particular, if a circulant Hermitian matrix is considered (for example, a discretized one-dimensional Laplacian with periodic boundaries[16]), the orthogonality property immediately follows from the usual orthogonality of eigenvectors of Hermitian matrices.
As the Galois group of is abelian, this is an abelian extension. Every subfield of a cyclotomic field is an abelian extension of the rationals. It follows that every nth root of unity may be expressed in term of k-roots, with various k not exceeding φ(n). In these cases Galois theory can be written out explicitly in terms of Gaussian periods: this theory from the Disquisitiones Arithmeticae of Gauss was published many years before Galois.[17]
Conversely, every abelian extension of the rationals is such a subfield of a cyclotomic field – this is the content of a theorem of Kronecker, usually called the Kronecker–Weber theorem on the grounds that Weber completed the proof.
Relation to quadratic integers
For n = 1, 2, both roots of unity 1 and −1 are integers.
For four other values of n, the primitive roots of unity are not quadratic integers, but the sum of any root of unity with its complex conjugate (also an nth root of unity) is a quadratic integer.
For n = 5, 10, none of the non-real roots of unity (which satisfy a quartic equation) is a quadratic integer, but the sum z + z = 2 Rez of each root with its complex conjugate (also a 5th root of unity) is an element of the ringZ[1 + √5/2] (D = 5). For two pairs of non-real 5th roots of unity these sums are inversegolden ratio and minus golden ratio.
For n = 8, for any root of unity z + z equals to either 0, ±2, or ±√2 (D = 2).
For n = 12, for any root of unity, z + z equals to either 0, ±1, ±2 or ±√3 (D = 3).
This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: List of countries and territories where Afrikaans or Dutch are official languages – news · newspapers · books · scholar · JSTOR (June 2023) (Learn how and when to remove this template message) Legal statuses Afrikaans and Dutch: Countries where Dut...
Orbital launch vehicle made by SpaceX Falcon HeavyFalcon Heavy test flight launchFunctionPartially reusable heavy-lift – super heavy‑lift launch vehicleManufacturerSpaceXCountry of originUnited StatesCost per launch Reusable: US$97 million (2022)[1] Expendable: US$150 million (2017)[2] SizeHeight70 m (230 ft)[3]Diameter3.66 m (12.0 ft) (each booster)Width12.2 m (40 ft)Mass1,420 t (3,130,000 lb)Stages2.5Capacity P...
Pour les articles homonymes, voir Fenton. Roger FentonRoger Fenton, Autoportrait.BiographieNaissance 28 mars 1819HeywoodDécès 8 août 1869 (à 50 ans)LondresNationalité britanniqueFormation University College de LondresActivités Photographe, photographe de guerre, journaliste, photojournalisteAutres informationsMembre de Royal Photographic SocietyArme British Armymodifier - modifier le code - modifier Wikidata Roger Fenton né le 28 mars 1819 à Heywood (Lancashire) et mort le 8 ao�...
Liga Champions UEFA 2010–2011Wembley Stadium di London menjadi tuan rumah finalInformasi turnamenJadwalpenyelenggaraanKualifikasi:29 Juni – 25 Agustus 2010Kompetisi utama:14 September 2010 – 28 Mei 2011Jumlahtim pesertaKompetisi utama: 32Total: 76 (dari 52 asosiasi)Hasil turnamenJuara Barcelona (gelar ke-4)Tempat kedua Manchester UnitedStatistik turnamenJumlahpertandingan125Jumlah gol355 (2,84 per pertandingan)Pencetak golterbanyak Lionel Messi (12 gol)← 2009–2010 2011...
Federico Santander Santander con la nazionale paraguaiana nel 2010 Nazionalità Paraguay Altezza 187 cm Peso 84 kg Calcio Ruolo Attaccante Squadra Nacional Carriera Giovanili 2005-2008 Guaraní Squadre di club1 2008-2012 Guaraní50 (20)2010-2011→ Tolosa23 (5)2011 Guaraní23 (12)2012 Racing Club15 (0)2012-2013→ Tigre18 (1)2013-2015 Guaraní57 (21)2015-2018 Copenaghen82 (38)2018-2022 Bologna67 (10)2022-2023 Reggina3 (0)2023...
Voce principale: Associazione Calcio Siena. AC SienaStagione 1993-1994Sport calcio Squadra Siena Allenatore Silvio Baldini Presidente Max Paganini Serie C112º nel girone B Coppa Italia Serie CFase eliminatoria a gironi Maggiori presenzeCampionato: Di Fabio (33) Miglior marcatoreCampionato: Carboni (9) StadioArtemio Franchi 1992-1993 1994-1995 Si invita a seguire il modello di voce Questa voce raccoglie le informazioni riguardanti l'Associazione Calcio Siena nelle competizioni ufficiali...
Robert GravesMakam Robert Graves di Deià, Majorca, SpanyolNama penaRobert von Ranke GravesPekerjaannovelis, penyair, kritikus sastraKebangsaanInggris Robert Ranke Graves (24 Juli 1895 – 7 Desember 1985) adalah seorang novelis, kritikus sastra, dan penyair Inggris.[1] Beberapa karyanya selama masa hidupnya antara lain: 1915[2] A Boy in Church[2] A Child's Nightmare[2] A Dead Boche[2] A Pinch of Salt[2] A Slice of Wedding Ca...
Pour les articles homonymes, voir Michelis. Madeleine Michelis Cette illustration a été retouchée par une IA (voir l'original). Données clés Naissance 22 août 1913 Neuilly-sur-Seine Décès 15 février 1944 (à 30 ans) 6e arrondissement de Paris Nationalité Française Profession Professeure agrégée de lettres classiques Autres activités résistante membre du réseau Shelburn et membre du réseau Libération Nord Formation École normale supérieure de Sèvres Distin...
Colpevole d'omicidioRobert De Niro ed Eliza Dushku in una scena del filmTitolo originaleCity by the Sea Paese di produzioneStati Uniti d'America Anno2002 Durata108 min Generedrammatico, thriller RegiaMichael Caton-Jones SoggettoMike McAlary (articolo Segno di un assassino) SceneggiaturaKen Hixon ProduttoreMatthew Baer, Michael Caton-Jones, Brad Grey, Elie Samaha, Laura Viederman Produttore esecutivoDon Carmody, Dan Klores, Roger Paradiso, Andrew Stevens FotografiaKarl Walter Lindenlaub Mo...
For other uses, see Victoria Avenue (disambiguation). Victoria Avenue, Mountain access road Victoria Avenue is a Lower City arterial road in Hamilton, Ontario, Canada. It starts off as a ramp and part of a Mountain-access road, the Claremont Access, on Hunter Street East in the Stinson neighbourhood. It's also a one-way thoroughfare that flows north through the Landsdale and the city's North End industrial neighbourhood past Burlington Street East where it ends at Pier 11. History Victoria Av...
Spanish poet For his son, the Spanish poet, see Leopoldo María Panero. Leopoldo PaneroBorn(1909-10-17)17 October 1909Astorga, León, Castile and León, SpainDied27 August 1962(1962-08-27) (aged 52)Castrillo de las Piedras, León, SpainOccupationPoet and writerNationalitySpanishAlma materUniversity of ValladolidGenrePoetryLiterary movementGeneration of '36Notable awardsFastenrath PrizeSpouseFelicidad BlancChildrenLeopoldo María Panero Juan Luis Panero Michi Panero Leopoldo Panero w...
西維珍尼亞 美國联邦州State of West Virginia 州旗州徽綽號:豪华之州地图中高亮部分为西維珍尼亞坐标:37°10'N-40°40'N, 77°40'W-82°40'W国家 美國加入聯邦1863年6月20日(第35个加入联邦)首府(最大城市)查爾斯頓政府 • 州长(英语:List of Governors of {{{Name}}}]]) • 副州长(英语:List of lieutenant governors of {{{Name}}}]])吉姆·賈斯蒂斯(R)米奇·卡邁克爾(...
This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article's lead section may be too short to adequately summarize the key points. Please consider expanding the lead to provide an accessible overview of all important aspects of the article. (September 2023) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources....
County in Oregon, United States This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Hood River County, Oregon – news · newspapers · books · scholar · JSTOR (March 2007) (Learn how and when to remove this message) County in OregonHood River CountyCountyHood River County Courthouse in Hood RiverLocation within the...
Legendary Indian poet, author of the Ramayana This article is about the Indian sage. For the Indian caste community, see Valmiki caste. For other uses, see Valmiki (disambiguation). MaharishiValmikiSage Valmiki composing the RamayanaPersonalBornAgni SharmaReligionHinduismParentPracheta (father)LineageRama Mantraraj[1] (mentioned by Govindaraja)MovementDharmic movement called Valmikism is based on Valmiki's teachingsNotable work(s)RamayanaYoga VasisthaValmiki SamhitaKnown forCompo...
American songwriter, actor, and librettist (born 1980) Lin-Manuel MirandaMiranda in 2019Born (1980-01-16) January 16, 1980 (age 44)New York City, U.S.EducationWesleyan University (BA)OccupationsSongwriteractorsingerfilmmakerrapperlibrettistYears active2002–presentSpouse Vanessa Nadal (m. 2010)Children2ParentsLuis A. Miranda Jr. (father)Luz Towns-Miranda (mother)RelativesJosé Miranda (cousin)AwardsFull listWebsitewww.linmanuel.com Lin-Manuel Miranda ...
Not to be confused with Greater Blue Mountains Area, Blue Mountains (New South Wales), Blue Mountains National Park, or Electoral district of Blue Mountains. Local government area in New South Wales, AustraliaCity of Blue MountainsNew South WalesCity of Blue Mountains council building in KatoombaLocation in Outer Metropolitan SydneyCoordinates33°42′S 150°18′E / 33.700°S 150.300°E / -33.700; 150.300Population78,121 (LGA 2021)[1]Established1 October&...