Ramanujan's sum

In number theory, Ramanujan's sum, usually denoted cq(n), is a function of two positive integer variables q and n defined by the formula

where (a, q) = 1 means that a only takes on values coprime to q.

Srinivasa Ramanujan mentioned the sums in a 1918 paper.[1] In addition to the expansions discussed in this article, Ramanujan's sums are used in the proof of Vinogradov's theorem that every sufficiently large odd number is the sum of three primes.[2]

Notation

For integers a and b, is read "a divides b" and means that there is an integer c such that Similarly, is read "a does not divide b". The summation symbol

means that d goes through all the positive divisors of m, e.g.

is the greatest common divisor,

is Euler's totient function,

is the Möbius function, and

is the Riemann zeta function.

Formulas for cq(n)

Trigonometry

These formulas come from the definition, Euler's formula and elementary trigonometric identities.

and so on (OEISA000012, OEISA033999, OEISA099837, OEISA176742,.., OEISA100051,...). cq(n) is always an integer.

Kluyver

Let Then ζq is a root of the equation xq − 1 = 0. Each of its powers,

is also a root. Therefore, since there are q of them, they are all of the roots. The numbers where 1 ≤ nq are called the q-th roots of unity. ζq is called a primitive q-th root of unity because the smallest value of n that makes is q. The other primitive q-th roots of unity are the numbers where (a, q) = 1. Therefore, there are φ(q) primitive q-th roots of unity.

Thus, the Ramanujan sum cq(n) is the sum of the n-th powers of the primitive q-th roots of unity.

It is a fact[3] that the powers of ζq are precisely the primitive roots for all the divisors of q.

Example. Let q = 12. Then

and are the primitive twelfth roots of unity,
and are the primitive sixth roots of unity,
and are the primitive fourth roots of unity,
and are the primitive third roots of unity,
is the primitive second root of unity, and
is the primitive first root of unity.

Therefore, if

is the sum of the n-th powers of all the roots, primitive and imprimitive,

and by Möbius inversion,

It follows from the identity xq − 1 = (x − 1)(xq−1 + xq−2 + ... + x + 1) that

and this leads to the formula

published by Kluyver in 1906.[4]

This shows that cq(n) is always an integer. Compare it with the formula

von Sterneck

It is easily shown from the definition that cq(n) is multiplicative when considered as a function of q for a fixed value of n:[5] i.e.

From the definition (or Kluyver's formula) it is straightforward to prove that, if p is a prime number,

and if pk is a prime power where k > 1,

This result and the multiplicative property can be used to prove

This is called von Sterneck's arithmetic function.[6] The equivalence of it and Ramanujan's sum is due to Hölder.[7][8]

Other properties of cq(n)

For all positive integers q,

For a fixed value of q the absolute value of the sequence is bounded by φ(q), and for a fixed value of n the absolute value of the sequence is bounded by n.

If q > 1

Let m1, m2 > 0, m = lcm(m1, m2). Then[9] Ramanujan's sums satisfy an orthogonality property:

Let n, k > 0. Then[10]

known as the Brauer - Rademacher identity.

If n > 0 and a is any integer, we also have[11]

due to Cohen.

Table

Ramanujan sum cs(n)
n
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
s 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1
3 −1 −1 2 −1 −1 2 −1 −1 2 −1 −1 2 −1 −1 2 −1 −1 2 −1 −1 2 −1 −1 2 −1 −1 2 −1 −1 2
4 0 −2 0 2 0 −2 0 2 0 −2 0 2 0 −2 0 2 0 −2 0 2 0 −2 0 2 0 −2 0 2 0 −2
5 −1 −1 −1 −1 4 −1 −1 −1 −1 4 −1 −1 −1 −1 4 −1 −1 −1 −1 4 −1 −1 −1 −1 4 −1 −1 −1 −1 4
6 1 −1 −2 −1 1 2 1 −1 −2 −1 1 2 1 −1 −2 −1 1 2 1 −1 −2 −1 1 2 1 −1 −2 −1 1 2
7 −1 −1 −1 −1 −1 −1 6 −1 −1 −1 −1 −1 −1 6 −1 −1 −1 −1 −1 −1 6 −1 −1 −1 −1 −1 −1 6 −1 −1
8 0 0 0 −4 0 0 0 4 0 0 0 −4 0 0 0 4 0 0 0 −4 0 0 0 4 0 0 0 −4 0 0
9 0 0 −3 0 0 −3 0 0 6 0 0 −3 0 0 −3 0 0 6 0 0 −3 0 0 −3 0 0 6 0 0 −3
10 1 −1 1 −1 −4 −1 1 −1 1 4 1 −1 1 −1 −4 −1 1 −1 1 4 1 −1 1 −1 −4 −1 1 −1 1 4
11 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 10 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 10 −1 −1 −1 −1 −1 −1 −1 −1
12 0 2 0 −2 0 −4 0 −2 0 2 0 4 0 2 0 −2 0 −4 0 −2 0 2 0 4 0 2 0 −2 0 −4
13 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 12 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 12 −1 −1 −1 −1
14 1 −1 1 −1 1 −1 −6 −1 1 −1 1 −1 1 6 1 −1 1 −1 1 −1 −6 −1 1 −1 1 −1 1 6 1 −1
15 1 1 −2 1 −4 −2 1 1 −2 −4 1 −2 1 1 8 1 1 −2 1 −4 −2 1 1 −2 −4 1 −2 1 1 8
16 0 0 0 0 0 0 0 −8 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 −8 0 0 0 0 0 0
17 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 16 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
18 0 0 3 0 0 −3 0 0 −6 0 0 −3 0 0 3 0 0 6 0 0 3 0 0 −3 0 0 −6 0 0 −3
19 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 18 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
20 0 2 0 −2 0 2 0 −2 0 −8 0 −2 0 2 0 −2 0 2 0 8 0 2 0 −2 0 2 0 −2 0 −8
21 1 1 −2 1 1 −2 −6 1 −2 1 1 −2 1 −6 −2 1 1 −2 1 1 12 1 1 −2 1 1 −2 −6 1 −2
22 1 −1 1 −1 1 −1 1 −1 1 −1 −10 −1 1 −1 1 −1 1 −1 1 −1 1 10 1 −1 1 −1 1 −1 1 −1
23 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 22 −1 −1 −1 −1 −1 −1 −1
24 0 0 0 4 0 0 0 −4 0 0 0 −8 0 0 0 −4 0 0 0 4 0 0 0 8 0 0 0 4 0 0
25 0 0 0 0 −5 0 0 0 0 −5 0 0 0 0 −5 0 0 0 0 −5 0 0 0 0 20 0 0 0 0 −5
26 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 −12 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 12 1 −1 1 −1
27 0 0 0 0 0 0 0 0 −9 0 0 0 0 0 0 0 0 −9 0 0 0 0 0 0 0 0 18 0 0 0
28 0 2 0 −2 0 2 0 −2 0 2 0 −2 0 −12 0 −2 0 2 0 −2 0 2 0 −2 0 2 0 12 0 2
29 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 28 −1
30 −1 1 2 1 4 −2 −1 1 2 −4 −1 −2 −1 1 −8 1 −1 −2 −1 −4 2 1 −1 −2 4 1 2 1 −1 8

Ramanujan expansions

If f (n) is an arithmetic function (i.e. a complex-valued function of the integers or natural numbers), then a convergent infinite series of the form:

or of the form:

where the akC, is called a Ramanujan expansion[12] of f (n).

Ramanujan found expansions of some of the well-known functions of number theory. All of these results are proved in an "elementary" manner (i.e. only using formal manipulations of series and the simplest results about convergence).[13][14][15]

The expansion of the zero function depends on a result from the analytic theory of prime numbers, namely that the series

converges to 0, and the results for r(n) and r′(n) depend on theorems in an earlier paper.[16]

All the formulas in this section are from Ramanujan's 1918 paper.

Generating functions

The generating functions of the Ramanujan sums are Dirichlet series:

is a generating function for the sequence cq(1), cq(2), ... where q is kept constant, and

is a generating function for the sequence c1(n), c2(n), ... where n is kept constant.

There is also the double Dirichlet series

The polynomial with Ramanujan sum's as coefficients can be expressed with cyclotomic polynomial[17]

σk(n)

σk(n) is the divisor function (i.e. the sum of the k-th powers of the divisors of n, including 1 and n). σ0(n), the number of divisors of n, is usually written d(n) and σ1(n), the sum of the divisors of n, is usually written σ(n).

If s > 0,

Setting s = 1 gives

If the Riemann hypothesis is true, and

d(n)

d(n) = σ0(n) is the number of divisors of n, including 1 and n itself.

where γ = 0.5772... is the Euler–Mascheroni constant.

φ(n)

Euler's totient function φ(n) is the number of positive integers less than n and coprime to n. Ramanujan defines a generalization of it, if

is the prime factorization of n, and s is a complex number, let

so that φ1(n) = φ(n) is Euler's function.[18]

He proves that

and uses this to show that

Letting s = 1,

Note that the constant is the inverse[19] of the one in the formula for σ(n).

Λ(n)

Von Mangoldt's function Λ(n) = 0 unless n = pk is a power of a prime number, in which case it is the natural logarithm log p.

Zero

For all n > 0,

This is equivalent to the prime number theorem.[20][21]

r2s(n) (sums of squares)

r2s(n) is the number of way of representing n as the sum of 2s squares, counting different orders and signs as different (e.g., r2(13) = 8, as 13 = (±2)2 + (±3)2 = (±3)2 + (±2)2.)

Ramanujan defines a function δ2s(n) and references a paper[22] in which he proved that r2s(n) = δ2s(n) for s = 1, 2, 3, and 4. For s > 4 he shows that δ2s(n) is a good approximation to r2s(n).

s = 1 has a special formula:

In the following formulas the signs repeat with a period of 4.

and therefore,

r2s(n) (sums of triangles)

is the number of ways n can be represented as the sum of 2s triangular numbers (i.e. the numbers 1, 3 = 1 + 2, 6 = 1 + 2 + 3, 10 = 1 + 2 + 3 + 4, 15, ...; the n-th triangular number is given by the formula nn + 1/2.)

The analysis here is similar to that for squares. Ramanujan refers to the same paper as he did for the squares, where he showed that there is a function such that for s = 1, 2, 3, and 4, and that for s > 4, is a good approximation to

Again, s = 1 requires a special formula:

If s is a multiple of 4,

Therefore,

Sums

Let

Then for s > 1,

See also

Notes

  1. ^ Ramanujan, On Certain Trigonometric Sums ...

    These sums are obviously of great interest, and a few of their properties have been discussed already. But, so far as I know, they have never been considered from the point of view which I adopt in this paper; and I believe that all the results which it contains are new.

    (Papers, p. 179). In a footnote cites pp. 360–370 of the Dirichlet–Dedekind Vorlesungen über Zahlentheorie, 4th ed.
  2. ^ Nathanson, ch. 8.
  3. ^ Hardy & Wright, Thms 65, 66
  4. ^ G. H. Hardy, P. V. Seshu Aiyar, & B. M. Wilson, notes to On certain trigonometrical sums ..., Ramanujan, Papers, p. 343
  5. ^ Schwarz & Spilken (1994) p.16
  6. ^ B. Berndt, commentary to On certain trigonometrical sums..., Ramanujan, Papers, p. 371
  7. ^ Knopfmacher, p. 196
  8. ^ Hardy & Wright, p. 243
  9. ^ Tóth, external links, eq. 6
  10. ^ Tóth, external links, eq. 17.
  11. ^ Tóth, external links, eq. 8.
  12. ^ B. Berndt, commentary to On certain trigonometrical sums..., Ramanujan, Papers, pp. 369–371
  13. ^ Ramanujan, On certain trigonometrical sums...

    The majority of my formulae are "elementary" in the technical sense of the word — they can (that is to say) be proved by a combination of processes involving only finite algebra and simple general theorems concerning infinite series

    (Papers, p. 179)
  14. ^ The theory of formal Dirichlet series is discussed in Hardy & Wright, § 17.6 and in Knopfmacher.
  15. ^ Knopfmacher, ch. 7, discusses Ramanujan expansions as a type of Fourier expansion in an inner product space which has the cq as an orthogonal basis.
  16. ^ Ramanujan, On Certain Arithmetical Functions
  17. ^ Nicol, p. 1
  18. ^ This is Jordan's totient function, Js(n).
  19. ^ Cf. Hardy & Wright, Thm. 329, which states that
  20. ^ Hardy, Ramanujan, p. 141
  21. ^ B. Berndt, commentary to On certain trigonometrical sums..., Ramanujan, Papers, p. 371
  22. ^ Ramanujan, On Certain Arithmetical Functions

References

  • Hardy, G. H. (1999). Ramanujan: Twelve Lectures on Subjects Suggested by his Life and Work. Providence RI: AMS / Chelsea. ISBN 978-0-8218-2023-0.
  • Nathanson, Melvyn B. (1996). Additive Number Theory: the Classical Bases. Graduate Texts in Mathematics. Vol. 164. Springer-Verlag. Section A.7. ISBN 0-387-94656-X. Zbl 0859.11002..
  • Ramanujan, Srinivasa (1918). "On Certain Trigonometric Sums and their Applications in the Theory of Numbers". Transactions of the Cambridge Philosophical Society. 22 (15): 259–276. (pp. 179–199 of his Collected Papers)
  • Ramanujan, Srinivasa (1916). "On Certain Arithmetical Functions". Transactions of the Cambridge Philosophical Society. 22 (9): 159–184. (pp. 136–163 of his Collected Papers)
  • Schwarz, Wolfgang; Spilker, Jürgen (1994). Arithmetical Functions. An introduction to elementary and analytic properties of arithmetic functions and to some of their almost-periodic properties. London Mathematical Society Lecture Note Series. Vol. 184. Cambridge University Press. ISBN 0-521-42725-8. Zbl 0807.11001.

Read other articles:

Stasiun Fujimi富士見駅Stasiun Fujimi pada Oktober 2010Lokasi4654-796 Fujimi, Fujimi-cho, Suwa-gun. Nagano-kenJepangKoordinat35°54′43″N 138°14′19″E / 35.9119°N 138.2385°E / 35.9119; 138.2385Ketinggian955.2 meter[1]Operator JR EastJalur■ Jalur Utama ChūōLetak182.9 km dari TokyoJumlah peron1 peron samping + 1 peron pulauJumlah jalur3Informasi lainStatusMemiliki staf (Midori no Madoguchi)Situs webSitus web resmiSejarahDibuka21 Desember 1904Penum...

 

GreedPoster rilis layar lebarSutradaraErich von StroheimProduserErich von StroheimIrving ThalbergDitulis olehErich von StroheimJune MathisBerdasarkanMcTeagueoleh Frank NorrisPemeranGibson GowlandZaSu PittsJean HersholtPenata musikWilliam AxtSinematograferBen F. ReynoldsWilliam H. DanielsPenyuntingErich von Stroheim dan Frank Hull (versi 42-rol dan 24-rol)Rex Ingram dan Grant Whytock (versi 18-rol) June Mathis dan Joseph W. Farnham (versi 10-rol)PerusahaanproduksiThe Goldwyn Company–Me...

 

Disambiguazione – Se stai cercando altri significati, vedi Cowboy (disambigua). Questa voce o sezione sugli argomenti allevamento e professioni non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Un cowboy sul suo cavallo Un cowboy (letteralmente ragazzo delle mucche, da cow = vacca e boy = ragazzo, in inglese) era un mandriano che curava le mandrie nei ra...

Art that reflects women's lives and experiences It has been suggested that this article be merged into Feminist art movement. (Discuss) Proposed since January 2024. Mary Schepisi, Beauty Interrupted, 2011 Part of a series onFeminism History Feminist history History of feminism Women's history American British Canadian German Waves First Second Third Fourth Timelines Women's suffrage Muslim countries US Other women's rights Women's suffrage by country Austria Australia Canada Colombia India Ja...

 

Un rejoneador est un cavalier combattant le taureau avec un rejón, javelot de bois qui a succédé à la lance dans la pratique seigneuriale du combat à cheval du taureau[1]. La corrida de rejón ou corrida équestre porte encore le nom de « caballero en plaza » (synonyme de « torero à cheval »)[2]. Historique et présentation Pose de banderilles par le rejoneador. À l'origine, le rejoneador était un cavalier non professionnel qui se produisait dans des fêtes roy...

 

Location of DeSoto Parish in Louisiana This is a list of the National Register of Historic Places listings in DeSoto Parish, Louisiana. This is intended to be a complete list of the properties and districts on the National Register of Historic Places in DeSoto Parish, Louisiana, United States. The locations of National Register properties and districts for which the latitude and longitude coordinates are included below, may be seen in a map.[1] There are 28 properties and districts l...

Husband and Wife by Lorenzo Lotto, 1523 A couple interview (or joint couple interview, or more broadly conjoint interview, joint interview or dyadic interview) is a method of qualitative research used in the social sciences, where two spouses are interviewed together.[1] Such an interview is typically semi-structured or unstructured. Couple interviews are important in household research, often from a psychological, sociological, anthropological or social geographical perspective, and...

 

2015 film directed by Paul J. Lane The SingletonDirected byPaul J. LaneScreenplay byMary ThomsonStarringMarlon BlueKaren FairfaxShane HartJadey DuffieldMusic byKirsty KeoghPaul B. Allen IIIProductioncompanyPJL FilmsRelease date 21 December 2015 (2015-12-21) (United Kingdom) CountryUnited KingdomLanguageEnglish The Singleton is a British drama film, directed by Paul J. Lane. The film stars Marlon Blue, Karen Fairfax, Shane Hart, Jadey Duffield, Carl T. James and Gillian Brod...

 

National Football League rivalry Chicago Bears–New York Giants Chicago Bears New York Giants First meetingDecember 6, 1925Bears 19, Giants 7Latest meetingOctober 2, 2022Giants 20, Bears 12Next meetingTBD (no later than 2025 regular season)StatisticsMeetings total63All-time seriesBears, 36–25–2Regular season seriesBears, 31–22–2Postseason resultsBears, 5–3 Most recent January 13, 1991Giants 31, Bears 3Largest victoryBears, 56–7 (1943)Longest win streakBears, 5 (1970–87)Current ...

この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方)出典検索?: コルク – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL(2017年4月) コルクを打ち抜いて作った瓶の栓 コルク(木栓、�...

 

Флаг гордости бисексуалов Бисексуальность      Сексуальные ориентации Бисексуальность Пансексуальность Полисексуальность Моносексуальность Сексуальные идентичности Би-любопытство Гетерогибкость и гомогибкость Сексуальная текучесть Исследования Шк...

 

СтаницаДагестанская 44°22′27″ с. ш. 40°00′45″ в. д.HGЯO Страна  Россия Субъект Федерации Адыгея Муниципальный район Майкопский Сельское поселение Краснооктябрьское История и география Основан 1863 Прежние названия Дагестанский Высота центра 304 м Часовой пояс UT...

Bulgarian footballer Georgi Hristov Hristov with Tampa Bay Rowdies in 2017Personal informationFull name Georgi Georgiev HristovDate of birth (1985-01-10) 10 January 1985 (age 39)Place of birth Plovdiv, BulgariaHeight 1.84 m (6 ft 0 in)Position(s) StrikerYouth career Maritsa PlovdivSenior career*Years Team Apps (Gls)2002–2007 Maritsa Plovdiv 111 (51)2007–2008 Botev Plovdiv 30 (19)2008–2010 Levski Sofia 38 (12)2010 → Wisła Kraków (loan) 2 (0)2010–2012 Slavia Sofi...

 

Đối với các định nghĩa khác, xem Nhiễm trùng (định hướng). Bệnh truyền nhiễmMột sai màu hiển vi điện tử cho thấy một thoi trùng bệnh sốt rét di cư ở biểu mô giữa ruột non.Chuyên khoaBệnh truyền nhiễmICD-10A00-B99ICD-9-CM001-139DiseasesDB28832MeSHD003141 Nhiễm trùng (infection) là sự xâm nhập của mầm bệnh vào cơ thể và phản ứng của cơ thể đối với thương tổn do mầm bệnh gây nên [1]...

 

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (فبراير 2016) بطولة آسيا تحت 17 سنة لكرة القدم 1994معلومات عامةفئة المنافسة تحت 17 سنة الرياضة كرة القدم المكان الدوحة رقم ...

Частина серії проФілософіяLeft to right: Plato, Kant, Nietzsche, Buddha, Confucius, AverroesПлатонКантНіцшеБуддаКонфуційАверроес Філософи Епістемологи Естетики Етики Логіки Метафізики Соціально-політичні філософи Традиції Аналітична Арістотелівська Африканська Близькосхідна іранська Буддій�...

 

Penggambaran Jupiter Icy Moons Orbiter Jupiter Icy Moons Orbiter (JIMO) adalah wahana antariksa yang diusulkan dengan maksud untuk menjelajahi satelit-satelit ber-es Jupiter. Target utama misi ini adalah Europa, yang diduga memiliki samudra di bawah permukaannya yang mungkin mengandung kehidupan. Ganimede dan Kalisto, yang juga diduga memiliki samudra cair yang bergaram di bawah permukaan esnya, juga akan diselidiki oleh misi ini. Sayangnya, akibat perubahan prioritas NASA yang lebih mendukun...

 

Referendum a Cuba del 2022Stato Cuba Data25 settembre 2022 TemaApprovazione del nuovo “Codice delle Famiglie” Esito Sì    66,87% No    33,13% Affluenza74,01% Il referendum a Cuba del 2022 si è svolto il 25 settembre 2022 a Cuba per chiedere agli elettori l'approvazione del nuovo codice di famiglia, che prevede fra l'altro di legalizzare il matrimonio tra persone dello stesso sesso, l'adozione da parte di coppie dello stesso sesso e la surrogazione di maternit�...

Euophrys kataokai Klasifikasi ilmiah Kerajaan: Animalia Filum: Arthropoda Kelas: Arachnida Ordo: Araneae Famili: Salticidae Genus: Euophrys Spesies: Euophrys kataokai Nama binomial Euophrys kataokaiIkeda, 1996 Euophrys kataokai adalah spesies laba-laba yang tergolong famili Salticidae. Spesies ini juga merupakan bagian dari genus Euophrys dan ordo Araneae. Nama ilmiah dari spesies ini pertama kali diterbitkan pada tahun 1996 oleh Ikeda. Laba-laba ini biasanya banyak ditemui di Rusia, Korea, ...

 

Kurdish politician in Turkey Ebru GünayMember of the Grand National Assembly of TurkeyIncumbentAssumed office June 2018 Personal detailsBorn1 January 1982Bingöl, Bingöl Province, TurkeyCitizenshipTurkishPolitical partyHDP Ebru Günay (born 1 January 1982, Bingöl, Turkey) is a Kurdish jurist and a politician of the Peoples' Democratic Party (HDP). She was elected a member of the Grand National Assembly of Turkey in 2018 and is currently the spokeswoman of the HDP. Education and profess...