Dirichlet series

In mathematics, a Dirichlet series is any series of the form where s is complex, and is a complex sequence. It is a special case of general Dirichlet series.

Dirichlet series play a variety of important roles in analytic number theory. The most usually seen definition of the Riemann zeta function is a Dirichlet series, as are the Dirichlet L-functions. Specifically, the Riemann zeta function ζ(s) is the Dirichlet series of the constant unit function u(n), namely: where D(u, s) denotes the Dirichlet series of u(n). It is conjectured that the Selberg class of series obeys the generalized Riemann hypothesis. The series is named in honor of Peter Gustav Lejeune Dirichlet.

Combinatorial importance

Dirichlet series can be used as generating series for counting weighted sets of objects with respect to a weight which is combined multiplicatively when taking Cartesian products.

Suppose that A is a set with a function w: AN assigning a weight to each of the elements of A, and suppose additionally that the fibre over any natural number under that weight is a finite set. (We call such an arrangement (A,w) a weighted set.) Suppose additionally that an is the number of elements of A with weight n. Then we define the formal Dirichlet generating series for A with respect to w as follows:

Note that if A and B are disjoint subsets of some weighted set (U, w), then the Dirichlet series for their (disjoint) union is equal to the sum of their Dirichlet series:

Moreover, if (A, u) and (B, v) are two weighted sets, and we define a weight function w: A × BN by

for all a in A and b in B, then we have the following decomposition for the Dirichlet series of the Cartesian product:

This follows ultimately from the simple fact that

Examples

The most famous example of a Dirichlet series is

whose analytic continuation to (apart from a simple pole at ) is the Riemann zeta function.

Provided that f is real-valued at all natural numbers n, the respective real and imaginary parts of the Dirichlet series F have known formulas where we write :

Treating these as formal Dirichlet series for the time being in order to be able to ignore matters of convergence, note that we have:

as each natural number has a unique multiplicative decomposition into powers of primes. It is this bit of combinatorics which inspires the Euler product formula.

Another is:

where μ(n) is the Möbius function. This and many of the following series may be obtained by applying Möbius inversion and Dirichlet convolution to known series. For example, given a Dirichlet character χ(n) one has

where L(χ, s) is a Dirichlet L-function.

If the arithmetic function f has a Dirichlet inverse function , i.e., if there exists an inverse function such that the Dirichlet convolution of f with its inverse yields the multiplicative identity , then the DGF of the inverse function is given by the reciprocal of F:

Other identities include

where is the totient function,

where Jk is the Jordan function, and

where σa(n) is the divisor function. By specialization to the divisor function d = σ0 we have

The logarithm of the zeta function is given by

Similarly, we have that

Here, Λ(n) is the von Mangoldt function. The logarithmic derivative is then

These last three are special cases of a more general relationship for derivatives of Dirichlet series, given below.

Given the Liouville function λ(n), one has

Yet another example involves Ramanujan's sum:

Another pair of examples involves the Möbius function and the prime omega function:[1]

We have that the Dirichlet series for the prime zeta function, which is the analog to the Riemann zeta function summed only over indices n which are prime, is given by a sum over the Moebius function and the logarithms of the zeta function:

A large tabular catalog listing of other examples of sums corresponding to known Dirichlet series representations is found here.

Examples of Dirichlet series DGFs corresponding to additive (rather than multiplicative) f are given here for the prime omega functions and , which respectively count the number of distinct prime factors of n (with multiplicity or not). For example, the DGF of the first of these functions is expressed as the product of the Riemann zeta function and the prime zeta function for any complex s with :

If f is a multiplicative function such that its DGF F converges absolutely for all , and if p is any prime number, we have that

where is the Moebius function. Another unique Dirichlet series identity generates the summatory function of some arithmetic f evaluated at GCD inputs given by

We also have a formula between the DGFs of two arithmetic functions f and g related by Moebius inversion. In particular, if , then by Moebius inversion we have that . Hence, if F and G are the two respective DGFs of f and g, then we can relate these two DGFs by the formulas:

There is a known formula for the exponential of a Dirichlet series. If is the DGF of some arithmetic f with , then the DGF G is expressed by the sum

where is the Dirichlet inverse of f and where the arithmetic derivative of f is given by the formula for all natural numbers .

Analytic properties

Given a sequence of complex numbers we try to consider the value of

as a function of the complex variable s. In order for this to make sense, we need to consider the convergence properties of the above infinite series:

If is a bounded sequence of complex numbers, then the corresponding Dirichlet series f converges absolutely on the open half-plane Re(s) > 1. In general, if an = O(nk), the series converges absolutely in the half plane Re(s) > k + 1.

If the set of sums

is bounded for n and k ≥ 0, then the above infinite series converges on the open half-plane of s such that Re(s) > 0.

In both cases f is an analytic function on the corresponding open half plane.

In general is the abscissa of convergence of a Dirichlet series if it converges for and diverges for This is the analogue for Dirichlet series of the radius of convergence for power series. The Dirichlet series case is more complicated, though: absolute convergence and uniform convergence may occur in distinct half-planes.

In many cases, the analytic function associated with a Dirichlet series has an analytic extension to a larger domain.

Abscissa of convergence

Suppose

converges for some

Proposition 1.

Proof. Note that:

and define

where

By summation by parts we have

Proposition 2. Define
Then:
is the abscissa of convergence of the Dirichlet series.

Proof. From the definition

so that

which converges as whenever Hence, for every such that diverges, we have and this finishes the proof.

Proposition 3. If converges then as and where it is meromorphic ( has no poles on ).

Proof. Note that

and we have by summation by parts, for

Now find N such that for n > N,

and hence, for every there is a such that for :[2]

Formal Dirichlet series

A formal Dirichlet series over a ring R is associated to a function a from the positive integers to R

with addition and multiplication defined by

where

is the pointwise sum and

is the Dirichlet convolution of a and b.

The formal Dirichlet series form a ring Ω, indeed an R-algebra, with the zero function as additive zero element and the function δ defined by δ(1) = 1, δ(n) = 0 for n > 1 as multiplicative identity. An element of this ring is invertible if a(1) is invertible in R. If R is commutative, so is Ω; if R is an integral domain, so is Ω. The non-zero multiplicative functions form a subgroup of the group of units of Ω.

The ring of formal Dirichlet series over C is isomorphic to a ring of formal power series in countably many variables.[3]

Derivatives

Given

it is possible to show that

assuming the right hand side converges. For a completely multiplicative function ƒ(n), and assuming the series converges for Re(s) > σ0, then one has that

converges for Re(s) > σ0. Here, Λ(n) is the von Mangoldt function.

Products

Suppose

and

If both F(s) and G(s) are absolutely convergent for s > a and s > b then we have

If a = b and ƒ(n) = g(n) we have

Coefficient inversion (integral formula)

For all positive integers , the function f at x, , can be recovered from the Dirichlet generating function (DGF) F of f (or the Dirichlet series over f) using the following integral formula whenever , the abscissa of absolute convergence of the DGF F [4]

It is also possible to invert the Mellin transform of the summatory function of f that defines the DGF F of f to obtain the coefficients of the Dirichlet series (see section below). In this case, we arrive at a complex contour integral formula related to Perron's theorem. Practically speaking, the rates of convergence of the above formula as a function of T are variable, and if the Dirichlet series F is sensitive to sign changes as a slowly converging series, it may require very large T to approximate the coefficients of F using this formula without taking the formal limit.

Another variant of the previous formula stated in Apostol's book provides an integral formula for an alternate sum in the following form for and any real where we denote :

Integral and series transformations

The inverse Mellin transform of a Dirichlet series, divided by s, is given by Perron's formula. Additionally, if is the (formal) ordinary generating function of the sequence of , then an integral representation for the Dirichlet series of the generating function sequence, , is given by [5]

Another class of related derivative and series-based generating function transformations on the ordinary generating function of a sequence which effectively produces the left-hand-side expansion in the previous equation are respectively defined in.[6][7]

Relation to power series

The sequence an generated by a Dirichlet series generating function corresponding to:

where ζ(s) is the Riemann zeta function, has the ordinary generating function:

Relation to the summatory function of an arithmetic function via Mellin transforms

If f is an arithmetic function with corresponding DGF F, and the summatory function of f is defined by

then we can express F by the Mellin transform of the summatory function at . Namely, we have that

For and any natural numbers , we also have the approximation to the DGF F of f given by

See also

References

  1. ^ The formulas for both series are given in Section 27.4 of the NIST Handbook of Mathematical Functions/
  2. ^ Hardy, G. H.; Riesz, M. (1915). The General Theory of Dirichlet's Series. Cambridge Tracts in Mathematics and Mathematical Physics. Vol. 18. Cambridge University Press.
  3. ^ Cashwell, E.D.; Everett, C.J. (1959). "The ring of number-theoretic functions". Pacific J. Math. 9 (4): 975–985. doi:10.2140/pjm.1959.9.975. ISSN 0030-8730. MR 0108510. Zbl 0092.04602.
  4. ^ Section 11.11 of Apostol's book proves this formula.
  5. ^ Borwein, David; Borwein, Jonathan M.; Girgensohn, Roland (1995). "Explicit evaluation of Euler sums". Proceedings of the Edinburgh Mathematical Society. Series II. 38 (2): 277–294. doi:10.1017/S0013091500019088. hdl:1959.13/1043647.
  6. ^ Schmidt, M. D. (2017). "Zeta series generating function transformations related to polylogarithm functions and the k-order harmonic numbers" (PDF). Online Journal of Analytic Combinatorics (12).
  7. ^ Schmidt, M. D. (2016). "Zeta Series Generating Function Transformations Related to Generalized Stirling Numbers and Partial Sums of the Hurwitz Zeta Function". arXiv:1611.00957 [math.CO].

Read other articles:

Coité do NóiaMunisipalitasNegara BrasilNegara bagianAlagoasLuas • Total88,510 km2 (34,170 sq mi)Populasi (2010) • Total10.926 • Kepadatan0,12/km2 (0,32/sq mi) Coité do Nóia merupakan sebuah munisipalitas yang terletak di negara bagian Brasil di Alagoas. lbs Munisipalitas di AlagoasIbu kota: MaceióArapiraca Arapiraca Campo Grande Coité do Nóia Craíbas Feira Grande Girau do Ponciano Lagoa da Canoa Limoeiro de Anadia São Sebas...

 

 

Ланчестер «Lanchester» РИА. Захвачен немцами летом 1917 года Lanchester armoured car Боевая масса, т 4,7 Экипаж, чел. 4 История Производитель  Lanchester Motor Company Годы разработки 1914 Годы производства 1914—1916 Годы эксплуатации 1915—после 1920 Количество выпущенных, шт. ~ 50 Основные операторы Размеры Д...

 

 

Austrian astronomer and mathematician (1514–1576) RheticusBorn16 February 1514Feldkirch, Archduchy of Austria, Holy Roman Empire(present-day Austria)Died4 December 1574(1574-12-04) (aged 60)Kassa, Kingdom of Hungary, Habsburg monarchy(present-day Slovakia)Alma materUniversity of WittenbergKnown forTrigonometric tables[2]Scientific careerFieldsMathematician and astronomerInstitutionsUniversity of Wittenberg (1536–42)University of Leipzig (1542–51)[1]Academi...

Untuk tempat yang bernama sama, lihat Kotabaru (disambiguasi). KotabaruKelurahanNegara IndonesiaProvinsiDaerah Istimewa YogyakartaKotaYogyakartaKecamatanGondokusumanKodepos55224Kode Kemendagri34.71.03.1002 Kode BPS3471060004 Kotabaru (Nieuwe Wijk)Repro negatif foto Jl. Mataram (kini Jl. Suroto) dan Jl. Dr. Yap (kini Jl. Cik Di Tiro) di Kotabaru, Yogyakarta antara tahun 1900-1940.LokasiKota Yogyakarta, Daerah Istimewa Yogyakarta, IndonesiaStatusSelesaiLama pembangunan1917-1922PerusahaanAr...

 

 

AthenaAthena Varvakeion, patung dari masa Romawi paruh pertama abad ke-3 Masehi. Patung ini adalah replika dari arca berukuran raksasa Athena Parthenos karya Phidias yang pernah berdiri di Parthenon, Akropolis Athena. Ditemukan di Athena dekat sekolah Varvakeion.Dewi kebijaksanaan, perang, strategi[1] Dewi pelindung kota AthenaSimbolBurung hantu, pohon zaitun, ular, laba-laba, Aigis, baju perang, helm perang, tombakOrang tuaZeus sendirian dalam Iliad Zeus dan Metis dalam TheogonySaud...

 

 

Lorenzo Amoruso Amoruso al Bari nel 1990 Nazionalità  Italia Altezza 184 cm Peso 87 kg Calcio Ruolo Difensore Termine carriera 2010 Carriera Giovanili 1984-1986 Palese1986-1988 Bari Squadre di club1 1988-1991 Bari11 (1)1991-1992→  Mantova13 (1)1992-1993→  Vis Pesaro19 (1)1993-1995 Bari64 (7)1995-1997 Fiorentina54 (3)1997-2003 Rangers149 (13)2003-2006 Blackburn18 (3)2007-2008 Cosmos52 (8) Nazionale 1989-1991 Italia U-212 (0) 1 I due numer...

Medical specialty This article is about the surgical specialty. For goregrind band, see General Surgery (band). This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: General surgery – news · newspapers · books · scholar · JSTOR (March 2024) (Learn how and when to remove this message) A surgeon operating. General s...

 

 

Aimée & JaguarPoster filmSutradaraMax FärberböckProduserHanno HuthGünter RohrbachLew RywinDitulis olehMax FärberböckErica Fischer (buku)Rona MunroPemeranMaria SchraderJuliane KöhlerPenata musikJan A. P. KaczmarekSinematograferTony ImiPenyuntingBarbara HenningsDistributorSenator FilmTanggal rilis 10 Februari 1999 (1999-02-10) Durasi125 menitNegaraJermanBahasaJerman Aimée & Jaguar adalah sebuah film drama Jerman 1999 yang berlatar belakang Berlin pada masa Perang Duni...

 

 

County in West Virginia, United States County in West VirginiaRitchie CountyCountyRitchie County Courthouse in HarrisvilleLocation within the U.S. state of West VirginiaWest Virginia's location within the U.S.Coordinates: 39°11′N 81°04′W / 39.18°N 81.07°W / 39.18; -81.07Country United StatesState West VirginiaFoundedFebruary 18, 1843Named forThomas RitchieSeatHarrisvilleLargest townHarrisvilleArea • Total454 sq mi (1,180 km2...

2019 single by Yella Beezy featuring Chris Brown Restroom OccupiedSingle by Yella Beezy featuring Chris Brownfrom the album Baccend Beezy ReleasedJuly 19, 2019Recorded2019GenreTrapR&BLength3:36LabelHitcoSongwriter(s)Deandre Conway, Christopher BrownProducer(s)Chrishan, OG ParkerYella Beezy singles chronology Rich MF (2019) Restroom Occupied (2019) Ay Ya Ya Ya (2019) Chris Brown singles chronology Blow My Mind(2019) Restroom Occupied(2019) Did You(2019) Restroom Occupied is a song ...

 

 

Heinrich Trettner Naissance 19 septembre 1907Minden Décès 18 septembre 2006 (à 98 ans)Mönchengladbach Origine Allemand Allégeance  Troisième Reich Arme Wehrmacht, LuftwaffeBundeswehr Grade Generalleutnant Années de service 1925–1945 – 1956–1966 Commandement 4. Fallschirmjäger-Division Conflits Guerre civile d'EspagneSeconde Guerre mondiale Faits d'armes Seconde Guerre mondiale Bataille des Pays-Bas Bataille de Crète Distinctions Croix de chevalier de la croix de fer ...

 

 

В Википедии есть статьи о других людях с фамилией Манфред. Альберт Захарович Манфред Дата рождения 15 (28) августа 1906(1906-08-28) Место рождения Санкт-Петербург Дата смерти 16 декабря 1976(1976-12-16) (70 лет) Место смерти Москва Страна  Российская империя РСФСР СССР Род де...

دومينيك بورسيل Dominic Purcell معلومات شخصية اسم الولادة دومينيك هاكون بورسيل الميلاد 17 فبراير 1970 (العمر 54 سنة)يرال، إنجلترا مواطنة المملكة المتحدة أستراليا  عدد الأولاد 4   الحياة العملية الأدوار المهمة لينكون بوروز (( بريزون بريك )) المهنة التمثيل اللغات الإنجليزية  سنوا...

 

 

Shaykh al-MaqâriMuhammad Saddiq Al-Minshawiمُحَـمّـد صِـدّيْـق المِـنـشَـاوي Nama lain Mohamed Seddik El-Menshawy El Minshawy El Minshawi Informasi pribadiLahir(1920-01-20)20 Januari 1920Al Minshah, Kegubernuran Sohag, Mesir[1]Meninggal20 Juni 1969(1969-06-20) (umur 49)Kairo, MesirAgamaIslamKebangsaan MesirDikenal sebagaiPenghapal al-Qur'an akurat[2] Unique recitation of the Qur'anPekerjaanUlamaPengarangQari Muhammad Saddiq Al-Minshawi...

 

 

Woodworking joinery technique Dovetail redirects here. For other uses, see Dovetail (disambiguation). Dovetail Joint redirects here. For the band, see Dovetail Joint (band). A finished dovetail joint Dovetailed woodworking joints on a Romanian church Stone pillar at the Vazhappally Maha Siva Temple A dovetail joint or simply dovetail is a joinery technique most commonly used in woodworking joinery (carpentry), including furniture, cabinets,[1] log buildings, and traditional timber fra...

Indian politician C. H. Mohammad Koya2nd Deputy Chief Minister of KeralaIn office24 May 1982 – 28 September 1983Chief MinisterK. KarunakaranPreceded byOffice VacantSucceeded byK. Avukader Kutty NahaIn office28 December 1981 – 17 March 1982Chief MinisterK. KarunakaranPreceded byR. SankarSucceeded byOffice Vacant8th Chief Minister of KeralaIn office12 October 1979 – 1 December 1979Preceded byP. K. Vasudevan NairSucceeded byPresident's ruleSpeaker of the Kera...

 

 

بريد أيرلنداالشعارمعلومات عامةالبلد  جمهورية أيرلندا التأسيس 1 يناير 1984 النوع عمل تجاري — خدمة بريدية الشكل القانوني مؤسسات مملوكة للدولة المقر الرئيسي General Post Office (en) مواقع الويب anpost.com[2] (الإنجليزية)anpost.com… (الأيرلندية) المنظومة الاقتصاديةالصناعة بريد، خدمات البر�...

 

 

Region in AustraliaGulf PlainsAustraliaThe interim Australian bioregions,with Gulf Plains in redArea220,418.25 km2 (85,104.0 sq mi) Localities around Gulf Plains: Gulf Coastal Gulf of Carpentaria Cape York Gulf Fall and Uplands Gulf Plains Einasleigh Uplands Mount Isa Inlier Mitchell Grass Downs Einasleigh Uplands The Gulf Plains, an interim Australian bioregion (IBRA), is located in the Northern Territory and Queensland, comprising 22,041,825 hectares (54,466,540 acres).[...

Artikel ini membutuhkan rujukan tambahan agar kualitasnya dapat dipastikan. Mohon bantu kami mengembangkan artikel ini dengan cara menambahkan rujukan ke sumber tepercaya. Pernyataan tak bersumber bisa saja dipertentangkan dan dihapus.Cari sumber: Lingkungan dan bangunan pertanian – berita · surat kabar · buku · cendekiawan · JSTOR (Maret 2014) Lingkungan dan bangunan pertanian (LBP) adalah salah satu cabang disiplin ilmu dalam teknik pertanian yang fo...

 

 

Gauriaguet La mairie. Administration Pays France Région Nouvelle-Aquitaine Département Gironde Arrondissement Blaye Intercommunalité Communauté de communes du Grand Cubzaguais Maire Mandat Alain Guillaume Montangon 2020-2026 Code postal 33240 Code commune 33183 Démographie Gentilé Gauriaguetains Populationmunicipale 1 478 hab. (2021 ) Densité 275 hab./km2 Géographie Coordonnées 45° 02′ 24″ nord, 0° 23′ 28″ ouest Altitude Min. 23...