Alternating series

In mathematics, an alternating series is an infinite series of terms that alternate between positive and negative signs. In capital-sigma notation this is expressed or with an > 0 for all n.

Like any series, an alternating series is a convergent series if and only if the sequence of partial sums of the series converges to a limit. The alternating series test guarantees that an alternating series is convergent if the terms an converge to 0 monotonically, but this condition is not necessary for convergence.

Examples

The geometric series 1/21/4 + 1/81/16 + ⋯ sums to 1/3.

The alternating harmonic series has a finite sum but the harmonic series does not. The series converges to , but is not absolutely convergent.

The Mercator series provides an analytic power series expression of the natural logarithm, given by

The functions sine and cosine used in trigonometry and introduced in elementary algebra as the ratio of sides of a right triangle can also be defined as alternating series in calculus. and When the alternating factor (–1)n is removed from these series one obtains the hyperbolic functions sinh and cosh used in calculus and statistics.

For integer or positive index α the Bessel function of the first kind may be defined with the alternating series where Γ(z) is the gamma function.

If s is a complex number, the Dirichlet eta function is formed as an alternating series that is used in analytic number theory.

Alternating series test

The theorem known as the "Leibniz Test" or the alternating series test states that an alternating series will converge if the terms an converge to 0 monotonically.

Proof: Suppose the sequence converges to zero and is monotone decreasing. If is odd and , we obtain the estimate via the following calculation:

Since is monotonically decreasing, the terms are negative. Thus, we have the final inequality: . Similarly, it can be shown that . Since converges to , the partial sums form a Cauchy sequence (i.e., the series satisfies the Cauchy criterion) and therefore they converge. The argument for even is similar.

Approximating sums

The estimate above does not depend on . So, if is approaching 0 monotonically, the estimate provides an error bound for approximating infinite sums by partial sums: That does not mean that this estimate always finds the very first element after which error is less than the modulus of the next term in the series. Indeed if you take and try to find the term after which error is at most 0.00005, the inequality above shows that the partial sum up through is enough, but in fact this is twice as many terms as needed. Indeed, the error after summing first 9999 elements is 0.0000500025, and so taking the partial sum up through is sufficient. This series happens to have the property that constructing a new series with also gives an alternating series where the Leibniz test applies and thus makes this simple error bound not optimal. This was improved by the Calabrese bound,[1] discovered in 1962, that says that this property allows for a result 2 times less than with the Leibniz error bound. In fact this is also not optimal for series where this property applies 2 or more times, which is described by Johnsonbaugh error bound.[2] If one can apply the property an infinite number of times, Euler's transform applies.[3]

Absolute convergence

A series converges absolutely if the series converges.

Theorem: Absolutely convergent series are convergent.

Proof: Suppose is absolutely convergent. Then, is convergent and it follows that converges as well. Since , the series converges by the comparison test. Therefore, the series converges as the difference of two convergent series .

Conditional convergence

A series is conditionally convergent if it converges but does not converge absolutely.

For example, the harmonic series diverges, while the alternating version converges by the alternating series test.

Rearrangements

For any series, we can create a new series by rearranging the order of summation. A series is unconditionally convergent if any rearrangement creates a series with the same convergence as the original series. Absolutely convergent series are unconditionally convergent. But the Riemann series theorem states that conditionally convergent series can be rearranged to create arbitrary convergence.[4] Agnew's theorem describes rearrangements that preserve convergence for all convergent series. The general principle is that addition of infinite sums is only commutative for absolutely convergent series.

For example, one false proof that 1=0 exploits the failure of associativity for infinite sums.

As another example, by Mercator series

But, since the series does not converge absolutely, we can rearrange the terms to obtain a series for :

Series acceleration

In practice, the numerical summation of an alternating series may be sped up using any one of a variety of series acceleration techniques. One of the oldest techniques is that of Euler summation, and there are many modern techniques that can offer even more rapid convergence.

See also

Notes

  1. ^ Calabrese, Philip (March 1962). "A Note on Alternating Series". The American Mathematical Monthly. 69 (3): 215–217. doi:10.2307/2311056. JSTOR 2311056.
  2. ^ Johnsonbaugh, Richard (October 1979). "Summing an Alternating Series". The American Mathematical Monthly. 86 (8): 637–648. doi:10.2307/2321292. JSTOR 2321292.
  3. ^ Villarino, Mark B. (2015-11-27). "The error in an alternating series". arXiv:1511.08568 [math.CA].
  4. ^ Mallik, AK (2007). "Curious Consequences of Simple Sequences". Resonance. 12 (1): 23–37. doi:10.1007/s12045-007-0004-7. S2CID 122327461.

References

Read other articles:

Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Hongik Ingan – berita · surat kabar · buku · cendekiawan · JSTOR Hongik Ingan (홍익인간;弘益人間) adalah filosofi yang dicetuskan oleh Dangun, pendiri kerajaan Gojoseon di periode kuno Korea. Hon...

 

 

Roni Ahmad Bupati Pidie ke-23Masa jabatan17 Juli 2017 – 17 Juli 2022PresidenJoko WidodoGubernurIrwandi YusufNova Iriansyah (Plt.)WakilFadhlullah T.M. Daud PendahuluSarjani AbdullahPenggantiWahyudi Adisiswanto (Pj.) Informasi pribadiLahir4 Mei 1968 (umur 55)Puuk, Delima, Pidie, AcehKebangsaanIndonesiaSuami/istriSyarifahAnakMuhammad RizalDara SyafiraNanda MaghfirahKhairul NisaNurakmaliaAlma materPelatihan Militer di Camp Tajura, Libya 1987-1988Karier militerPihak Gerakan Ace...

 

 

Daughter of Thomas Jefferson (1801-died after 1822) Harriet HemingsBornMay 1801Monticello, Albemarle County, Virginia, USDiedafter 1822OccupationTextile WorkerKnown forBeing daughter of Sally Hemings and Thomas JeffersonParent(s)Sally HemingsThomas JeffersonRelativesBeverly Hemings (brother), Madison Hemings (brother), Eston Hemings (brother) Harriet Hemings (May 1801 – after 1822) was born into slavery at Monticello, the home of Thomas Jefferson, third President of the United States, ...

Artikel ini mengenai Khatun, untuk permaisuri Bulgaria, lihat Maria Palaiologina Kantakouzene, untuk permaisuri Serbia, lihat Maria Palaiologina, Ratu Serbia. Maria Palaiologina, digambar dalam sebuah mozaik Bizantium di Gereja Chora, Istanbul Maria Palaiologina (Yunani: Μαρία Παλαιολογίνα) adalah putri dari Kaisar Bizantium Michael VIII Palaiologos (memerintah1258-1282) yang menjadi istri penguasa Mongol Abaqa Khan, dan pemimpin Kristen berpengaruh di kalangan Mongol. Se...

 

 

Полярная тундра Остаток кармака (культура Туле, Национальный парк Уккусиксалик, Нунавут) 67° с. ш. 90° з. д.HGЯOЭкология БиомТундра География Площадь1 032 800 км² Страна Канада Тип климатаПолярный высоких широт   Медиафайлы на Викискладе Поля́рная ту́...

 

 

Anang Syarif Hidayat Staf Ahli Sosial Budaya KapolriMasa jabatan31 Oktober 2021 – 31 Agustus 2022 PendahuluPriyo WidyantoPenggantiNico AfintaKepala Kepolisian Daerah Kepulauan Bangka BelitungMasa jabatan8 November 2019 – 31 Oktober 2021 PendahuluIstionoPenggantiYan Sultra Indrajaya Informasi pribadiLahir16 Agustus 1964 (umur 59)Kepanjen, MalangSuami/istriNina Juwita HastutiAlma materAkademi Kepolisian (1988)Karier militerPihak IndonesiaDinas/cabang Kepolisian N...

They Can't Stop the Spring Defvish interprétant They Can't Stop the Spring Chanson de Dervish Sortie 2007 Durée 3:03 Langue Anglais Genre Folk Format Single Auteur John Waters (en) Compositeur Tommy Moran Label RTÉ Chansons représentant l'Irlande au Concours Eurovision de la chanson Every Song Is a Cry for Love(2006) Irelande Douze Pointe(2008)modifier They Can't Stop the Spring (en français, Ils ne peuvent pas arrêter le printemps) est la chanson représentant l'Irlande au C...

 

 

Chiesa di San Giusto a Pressac Il miracolo eucaristico di Pressac sarebbe avvenuto nei pressi dell'omonima cittadina della Francia centro-occidentale il Giovedì santo del 1643: nella chiesa parrocchiale si sviluppò un incendio, che fuse quasi completamente il calice contenente un'ostia consacrata, ma la particola sarebbe rimasta intatta. Indice 1 Storia 2 Note 3 Voci correlate 4 Collegamenti esterni Storia L'incendio si sviluppò ne primo pomeriggio. Di mattina era stata celebrata la messa....

 

 

Taxonomy of cases requiring referral This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article may need to be rewritten to comply with Wikipedia's quality standards. You can help. The talk page may contain suggestions. (September 2023) This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by intro...

 烏克蘭總理Прем'єр-міністр України烏克蘭國徽現任杰尼斯·什米加尔自2020年3月4日任命者烏克蘭總統任期總統任命首任維托爾德·福金设立1991年11月后继职位無网站www.kmu.gov.ua/control/en/(英文) 乌克兰 乌克兰政府与政治系列条目 宪法 政府 总统 弗拉基米尔·泽连斯基 總統辦公室 国家安全与国防事务委员会 总统代表(英语:Representatives of the President of Ukraine) 总...

 

 

 本表是動態列表,或許永遠不會完結。歡迎您參考可靠來源來查漏補缺。 潛伏於中華民國國軍中的中共間諜列表收錄根據公開資料來源,曾潛伏於中華民國國軍、被中國共產黨聲稱或承認,或者遭中華民國政府調查審判,為中華人民共和國和中國人民解放軍進行間諜行為的人物。以下列表以現今可查知時間為準,正確的間諜活動或洩漏機密時間可能早於或晚於以下所歸�...

 

 

Президент Израиляивр. נשיא מדינת ישראל‎ Штандарт президента Израиля Должность занимает Ицхак Герцог с 7 июля 2021 Должность Форма обращения Его Превосходительство Резиденция Президентская резиденция Назначается избирается кнессетом Срок полномочий 7 лет, не более 1 с�...

Social system with male rule This article is about the social system. For other uses, see Patriarchy (disambiguation). Macho politics redirects here. For the concept of pride in male domination, see Machismo. Patriarchal system redirects here. For the political hierarchy of the Western Zhou, see Patriarchal system (Western Zhou). Not to be confused with Patriarchate. Part of a series onPolitical andlegal anthropology Basic concepts Status and rank Ascribed status Achieved status Social status...

 

 

Peta infrastruktur dan tata guna lahan di Komune Ramonchamp   = Kawasan perkotaan   = Lahan subur   = Padang rumput   = Lahan pertanaman campuran   = Hutan   = Vegetasi perdu   = Lahan basah   = Anak sungai]] Ramonchamp merupakan sebuah komune di departemen Vosges yang terletak pada sebelah timur laut Prancis. Lihat pula Komune di departemen Vosges Referensi INSEE lbsKomune di departemen Vosges Les Ableuvenettes Ahéville Aingeville Ainvelle Allarmont A...

 

 

Mexican television series YagoAlso known asYago, pasión y venganzaGenreTelenovelaCreated byLarissa AndradeBased onThe Count of Monte Cristoby Alexandre DumasWritten by Fernanda Eguiarte Alejandra Olvera Tania Tinajero Julio Cérsar Mármol Story by Ay Yapım Karem Deren Pınar Bulut Directed by Rodrigo Curiel Eric Morales Alfredo Kassem Creative directorJorge GaskaStarring Iván Sánchez Gabriela de la Garza Flavio Medina Pablo Valentín Opening themeYagoComposerGiacomán de Neymet Alejandro...

Cet article est une ébauche concernant le domaine militaire, l’Espagne et les armes. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Santa Bárbara Sistemas 155/52 Caractéristiques de service Type Obusier tracté Service 2002 - Utilisateurs Armée de terre espagnole Armée nationale colombienne Armée de terre du Salvador Production Concepteur Santa Bárbara Sistemas Constructeur Santa Bárbara Sistemas Prod...

 

 

Bagian dari seriAgama Mesir Kuno Kepercayaan Alam baka Duat Ma'at Mitologi Numerologi Filsafat Jiwa Praktik Pemakaman Formula pelayanan Kuil Dewa-Dewi Amun Amunet Anhur Anubis Anuket Apep Apis Aten Atum Bastet Bat Bes Empat putra Horus Geb Hapi Hathor Heka Hemsut Heqet Horus Isis Kek Khepri Khnum Khonsu Maahes Ma'at Mafdet Medjed Mehit Menhit Meretseger Meskhenet Monthu Min Mnevis Mut Neith Nekhbet Nephthys Nu Nut Osiris Pakhet Ptah Qebui Ra Ra-Horakhty Raet-Tawy Reshep Satis Sekhmet Seker Se...

 

 

17th-century German-language Bible This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (December 2023) (Learn how and when to remove this message) The Calov Bible is a three-volume 17th-century Bible that contains German translations and commentary by Martin Luther and additional commentary by Wittenberg theology professor Abraham Calovius. Title page of the Calov...

Orde Louise Luisen-OrdenLambang Orde (Kelas 1)Dianugerahkan oleh Kepala Wangsa PrusiaTipeOrde Kenegaraan (sebelumnya)Orde Wangsa (saat ini)Dibentuk3 Agustus 1814WangsaWangsa PrusiaPitaPutih dengan garis-garis hitamBerdaulatGeorg Friedrich, Pangeran PrusiaNyonya AgungSophie, Putri PrusiaKelasDame, Special Class Dame, Kelas ke-1 Dame, Kelas ke-2PrioritasTingkat lebih tinggiOrde Santo YohanesTingkat lebih rendahWilhelm-Orden Pita orde Orde Louise (bahasa Jerman: Luisen-Orden) didirikan pada ...

 

 

Este artículo o sección necesita referencias que aparezcan en una publicación acreditada. Busca fuentes: «Sueco de Finlandia» – noticias · libros · académico · imágenesEste aviso fue puesto el 31 de agosto de 2016. Sueco finés suomenruotsiHablado en Finlandia Finlandia (sudoeste)  ÅlandRegión Europa SeptentrionalHablantes FennoswedesFamilia   Indoeuropeo     Germánico       Nord-germ...