Alternating series

In mathematics, an alternating series is an infinite series of terms that alternate between positive and negative signs. In capital-sigma notation this is expressed or with an > 0 for all n.

Like any series, an alternating series is a convergent series if and only if the sequence of partial sums of the series converges to a limit. The alternating series test guarantees that an alternating series is convergent if the terms an converge to 0 monotonically, but this condition is not necessary for convergence.

Examples

The geometric series 1/21/4 + 1/81/16 + ⋯ sums to 1/3.

The alternating harmonic series has a finite sum but the harmonic series does not. The series converges to , but is not absolutely convergent.

The Mercator series provides an analytic power series expression of the natural logarithm, given by

The functions sine and cosine used in trigonometry and introduced in elementary algebra as the ratio of sides of a right triangle can also be defined as alternating series in calculus. and When the alternating factor (–1)n is removed from these series one obtains the hyperbolic functions sinh and cosh used in calculus and statistics.

For integer or positive index α the Bessel function of the first kind may be defined with the alternating series where Γ(z) is the gamma function.

If s is a complex number, the Dirichlet eta function is formed as an alternating series that is used in analytic number theory.

Alternating series test

The theorem known as the "Leibniz Test" or the alternating series test states that an alternating series will converge if the terms an converge to 0 monotonically.

Proof: Suppose the sequence converges to zero and is monotone decreasing. If is odd and , we obtain the estimate via the following calculation:

Since is monotonically decreasing, the terms are negative. Thus, we have the final inequality: . Similarly, it can be shown that . Since converges to , the partial sums form a Cauchy sequence (i.e., the series satisfies the Cauchy criterion) and therefore they converge. The argument for even is similar.

Approximating sums

The estimate above does not depend on . So, if is approaching 0 monotonically, the estimate provides an error bound for approximating infinite sums by partial sums: That does not mean that this estimate always finds the very first element after which error is less than the modulus of the next term in the series. Indeed if you take and try to find the term after which error is at most 0.00005, the inequality above shows that the partial sum up through is enough, but in fact this is twice as many terms as needed. Indeed, the error after summing first 9999 elements is 0.0000500025, and so taking the partial sum up through is sufficient. This series happens to have the property that constructing a new series with also gives an alternating series where the Leibniz test applies and thus makes this simple error bound not optimal. This was improved by the Calabrese bound,[1] discovered in 1962, that says that this property allows for a result 2 times less than with the Leibniz error bound. In fact this is also not optimal for series where this property applies 2 or more times, which is described by Johnsonbaugh error bound.[2] If one can apply the property an infinite number of times, Euler's transform applies.[3]

Absolute convergence

A series converges absolutely if the series converges.

Theorem: Absolutely convergent series are convergent.

Proof: Suppose is absolutely convergent. Then, is convergent and it follows that converges as well. Since , the series converges by the comparison test. Therefore, the series converges as the difference of two convergent series .

Conditional convergence

A series is conditionally convergent if it converges but does not converge absolutely.

For example, the harmonic series diverges, while the alternating version converges by the alternating series test.

Rearrangements

For any series, we can create a new series by rearranging the order of summation. A series is unconditionally convergent if any rearrangement creates a series with the same convergence as the original series. Absolutely convergent series are unconditionally convergent. But the Riemann series theorem states that conditionally convergent series can be rearranged to create arbitrary convergence.[4] The general principle is that addition of infinite sums is only commutative for absolutely convergent series.

For example, one false proof that 1=0 exploits the failure of associativity for infinite sums.

As another example, by Mercator series

But, since the series does not converge absolutely, we can rearrange the terms to obtain a series for :

Series acceleration

In practice, the numerical summation of an alternating series may be sped up using any one of a variety of series acceleration techniques. One of the oldest techniques is that of Euler summation, and there are many modern techniques that can offer even more rapid convergence.

See also

Notes

  1. ^ Calabrese, Philip (March 1962). "A Note on Alternating Series". The American Mathematical Monthly. 69 (3): 215–217. doi:10.2307/2311056. JSTOR 2311056.
  2. ^ Johnsonbaugh, Richard (October 1979). "Summing an Alternating Series". The American Mathematical Monthly. 86 (8): 637–648. doi:10.2307/2321292. JSTOR 2321292.
  3. ^ Villarino, Mark B. (2015-11-27). "The error in an alternating series". arXiv:1511.08568 [math.CA].
  4. ^ Mallik, AK (2007). "Curious Consequences of Simple Sequences". Resonance. 12 (1): 23–37. doi:10.1007/s12045-007-0004-7. S2CID 122327461.

References

Read other articles:

Bauernmarkt WappenStraße in Wien, Innere Stadt Bauernmarkt Basisdaten Ort Wien, Innere Stadt Ortsteil Innere Stadt (1. Bezirk) Angelegt im 13. Jahrhundert Neugestaltet 1844, 1913 Hist. Namen Münzerstraße, Hühnergasse, Taschnergässel, Alter Bauernmarkt Anschluss­straßen Freisingergasse Querstraßen Jasomirgottstraße, Brandstätte, Landskrongasse, Ertlgasse, Lichtensteg, Fischhof, Fleischmarkt Plätze Hoher Markt Bauwerke Zacherlhaus, Ankeruhr Nutzung Nutzergruppen Autoverkehr, Fuß...

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (أغسطس 2017) أفضل لاعب كرة قدم تونسيمعلومات عامةالرياضة كرة القدم البلد تونس مقدمة من العمل — لورونوفو أول جائزة 1970 تعد

National anthem of Albania Himni i FlamuritEnglish: Hymn to the FlagNational anthem of  AlbaniaLyricsAsdreni, 1912MusicCiprian Porumbescu, ext. 1883Adopted28 November 1912; 111 years ago (1912-11-28)Audio sampleU.S. Navy Band instrumental version (one verse)filehelp Himni i Flamurit (transl. Hymn to the Flag) is the national anthem of Albania, adopted in 1912. Its music is derived from the Romanian patriotic song Pe-al nostru steag e scris Unire, composed by ...

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Februari 2023. Masyarakat adat Ngata Toro adalah sekelompok masyarakat adat (lokal) yang bermukim di sekitar kawasan penyangga Taman Nasional Lore Lindu, Sulawesi Tengah. Masyarakat adat ini terbentuk ratusan tahun yang lalu dan telah mewujudkan sebuah komunitas yan...

Toegangspoort van Begraafplaats Emaus Begraafplaats Emaus is een begraafplaats in Vlaardingen die in 1823 in gebruik is genomen. Het was een van de eerste begraafplaatsen met een rooms-katholiek deel ten noorden van de grote rivieren. Bijzondere graven De gemeente Vlaardingen heeft 30 grafmonumenten aangewezen als funerair erfgoed. Zie een overzicht hiervan op de lijst van bijzondere grafmonumenten in Vlaardingen. Oorlogsgraven Op de begraafplaats is een erehof met daarin: Geuzengraven. Er zi...

У этого топонима есть и другие значения, см. Горское. ПосёлокГорскоефин. Nahkurila 61°05′27″ с. ш. 29°24′49″ в. д.HGЯO Страна  Россия Субъект Федерации Ленинградская область Муниципальный район Выборгский Городское поселение Каменногорское История и география Прежни�...

C

Ang C puyde mopasabot sa: Ang elementong kimiko karbon Kining maong panid sa pagklaro nagtala sa mga artikulo nga may samang titulo.Kon ang usa ka internal nga sumpay ang midala kanimo dinhi, palihog tabangi kami sa pag-ugmad sa Wikipedya pinaagi sa pag-edit aron modiretso sa target nga artikulo ang maong sumpay!

2013 Colombian filmSouth Star, aka Estrella del surMovie poster for Estrella del surDirected byGabriel González RodríguezWritten byGabriel González RodríguezStarringJulieth RestrepoCinematographyLeo CubillosMusic byDaniel Carvajalino MurciaRelease dateFebruary 24, 2013Running time112 minutesCountryColombiaLanguageSpanish South Star , released under the title Estrella del Sur, is a Colombian drama film released in 2013. It was written and directed by Gabriel González Rodríguez. Plot A gr...

2015 United States Grand Prix Race 16 of 19 in the 2015 Formula One World Championship Layout of the Circuit of the AmericasRace detailsDate 25 October 2015Official name 2015 Formula 1 United States Grand Prix[1]Location Circuit of the AmericasTravis County, Austin, TexasCourse Permanent racing facilityCourse length 5.513 km (3.426 miles)Distance 56 laps, 308.405 km (191.634 miles)Weather Very cloudy17 °C (63 °F) air temperature17–20 °C (63–68 °F) track tem...

History and art museum in Peterborough, England For the Canadian city's museum, see Peterborough Museum & Archives. The Museum and Art Gallery, Priestgate, Peterborough. Portrait of George Montagu by John Giles Eccardt after Jean-Baptiste van Loo (c. 1739–1750). Peterborough Museum and Art Gallery houses the historical and art collections of the city of Peterborough in Cambridgeshire, England. Managed by Vivacity on behalf of the city council, it is part of the Greater Fens Museum Partn...

British-bred Thoroughbred racehorse Glass DollGlass Doll in 1907.SireIsinglassGrandsireIsonomyDamFotaDamsireHamptonSexMareFoaled1904 (1904)[1]Died1922 (aged 17–18)CountryUnited KingdomColourBayBreederJack Barnato JoelOwnerJack Barnato JoelTrainerCharles MortonRecord8: 2-0-4Earnings£4,950 (in 1906)Major winsOaks Stakes (1906) Glass Doll (1904–1922) was a British Thoroughbred racehorse and broodmare. She showed little ability as a two-year-old, winning one minor race ...

Brazilian national registry for legal entities CNPJA CNPJ from Apple ComputerSubjectLegal entitiesFull nameCadastro Nacional de Pessoas JurídicasOrganizationFederal Revenue of BrazilIntroduced1998; 25 years ago (1998)No. of digits14Example00.623.904/0001-73 The Brazilian National Registry of Legal Entities (Portuguese: Cadastro Nacional de Pessoas Jurídicas, “CNPJ”) is a nationwide registry of corporations, partnerships, foundations, investment funds, an...

Max Jacob im Jahr 1934Fotografie von Carl Van Vechten, aus der Van Vechten Collection der Library of Congress Max Jacob (auch: Jakob; * 12. Juli 1876 in Quimper; † 5. März 1944 im Sammellager Drancy) war ein französischer Dichter, Maler und Schriftsteller. Inhaltsverzeichnis 1 Leben 2 Werke 3 Veröffentlichungen 4 Siehe auch 5 Literatur 6 Filme 7 Weblinks 8 Einzelnachweise Leben Max Jacob: Selbstporträt, 1901[1] Jacob verbrachte seine Jugend in der westfranzösischen Stadt Quimpe...

This article is about a radio station. For other uses, see Writ (disambiguation). Radio station in Wisconsin, United StatesWRIT-FMMilwaukee, WisconsinUnited StatesBroadcast areaGreater MilwaukeeFrequency95.7 MHz (HD Radio)Branding95.7 BIG FMProgrammingFormatClassic hitsAffiliationsPremiere NetworksOwnershipOwneriHeartMedia, Inc.(iHM Licenses, LLC)Sister stationsWISN, WKKV-FM, WMIL-FM, WOKY, WRNWHistoryFirst air dateMay 10, 1961; 63 years ago (1961-05-10)Former call signsWMIL...

Australian rules football club Old Yarra CobrasNamesFull nameOld Yarra Cobras Football ClubNickname(s)Cobras2023 seasonAfter finalsVAFA: 2nd VAFAW: 2ndHome-and-away seasonVAFA: 3rd VAFAW: 2ndLeading goalkickerVAFA: Jack Hall (38 goals) VAFAW: Iliana Zafiriou (36 goals)Club detailsFounded19 September 2022CompetitionVAFA: Division 1 VAFAW: PremierCoachVAFA: Nathan Monaco VAFAW: Michael WinesCaptain(s)VAFA: Nick Zappala VAFAW: Hilary DonelanGround(s)Swan St, Southbank The Old Yarra Cobras Footb...

Joe Borg Født19. mars 1952[1] (72 år)VallettaBeskjeftigelsePolitiker, universitetslærer EmbeteEuropean Commissioner for Maritime Affairs and Fisheries (2004–2010)European Commissioner for International Cooperation, Humanitarian Aid and Crisis Response (2004–2004)Member of the House of Representatives of MaltaMinister for Foreign Affairs (1999–2004)European Commissioner for International Cooperation, Humanitarian Aid and Crisis Response (2004–2004) ...

Beriev A-40 Albatros (juga Be-42, nama pelaporan NATO: Mermaid) adalah pesawat perahu terbang amfibi sayap tinggi (high wing) bermesin jet dirancang oleh Beriev Aircraft Company untuk peran anti-kapal selam. Dimaksudkan sebagai pengganti pesawat amfibi Beriev Be-12 dan darat Ilyushin Il-38,[1] proyek dihentikan setelah hanya satu prototipe telah diproduksi, dengan kedua 70% selesai,[2] karena perpisahan dari Uni Soviet.[3] Laporan terakhir menunjukkan proyek telah dih...

この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方)出典検索?: 川喜多雄二 – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL(2016年5月) 川喜多雄二本名 脇猷二別名義 川喜多小六生年...

German automobile manufacturer This article is about the automotive brand and manufacturer, Porsche AG. For the holding company that is the majority owner of Volkswagen Group, see Porsche SE. For other uses of Porsche, see Porsche (disambiguation). Dr. Ing. h.c. F. Porsche AGHeadquarters in StuttgartCompany typePublic (AG)Traded asFWB: P911DAX componentISINDE000PAG9113IndustryAutomotiveFounded1931; 93 years ago (1931) in Stuttgart, GermanyFounderFerdinand PorscheHeadqua...

American toad Specimen from Jacques-Cartier National Park, Quebec, Canada Conservation status Least Concern  (IUCN 3.1)[1] Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Chordata Class: Amphibia Order: Anura Family: Bufonidae Genus: Anaxyrus Species: A. americanus Binomial name Anaxyrus americanus(Holbrook, 1836) Subspecies A. a. americanus A. a. charlesmithi A. a. copei Range of A. americanus Synonyms Bufo americanus Holbrook, 1836 The American toad ...