Dirichlet's theorem on arithmetic progressions

In number theory, Dirichlet's theorem, also called the Dirichlet prime number theorem, states that for any two positive coprime integers a and d, there are infinitely many primes of the form a + nd, where n is also a positive integer. In other words, there are infinitely many primes that are congruent to a modulo d. The numbers of the form a + nd form an arithmetic progression

and Dirichlet's theorem states that this sequence contains infinitely many prime numbers. The theorem extends Euclid's theorem that there are infinitely many prime numbers. Stronger forms of Dirichlet's theorem state that for any such arithmetic progression, the sum of the reciprocals of the prime numbers in the progression diverges and that different such arithmetic progressions with the same modulus have approximately the same proportions of primes. Equivalently, the primes are evenly distributed (asymptotically) among the congruence classes modulo d containing a's coprime to d.

The theorem is named after the German mathematician Peter Gustav Lejeune Dirichlet, who proved it in 1837.

Examples

The primes of the form 4n + 3 are (sequence A002145 in the OEIS)

3, 7, 11, 19, 23, 31, 43, 47, 59, 67, 71, 79, 83, 103, 107, 127, 131, 139, 151, 163, 167, 179, 191, 199, 211, 223, 227, 239, 251, 263, 271, 283, ...

They correspond to the following values of n: (sequence A095278 in the OEIS)

0, 1, 2, 4, 5, 7, 10, 11, 14, 16, 17, 19, 20, 25, 26, 31, 32, 34, 37, 40, 41, 44, 47, 49, 52, 55, 56, 59, 62, 65, 67, 70, 76, 77, 82, 86, 89, 91, 94, 95, ...

The strong form of Dirichlet's theorem implies that

is a divergent series.

Sequences dn + a with odd d are often ignored because half the numbers are even and the other half is the same numbers as a sequence with 2d, if we start with n = 0. For example, 6n + 1 produces the same primes as 3n + 1, while 6n + 5 produces the same as 3n + 2 except for the only even prime 2. The following table lists several arithmetic progressions with infinitely many primes and the first few ones in each of them.

Arithmetic
progression
First 10 of infinitely many primes OEIS sequence
2n + 1 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, … A065091
4n + 1 5, 13, 17, 29, 37, 41, 53, 61, 73, 89, … A002144
4n + 3 3, 7, 11, 19, 23, 31, 43, 47, 59, 67, … A002145
6n + 1 7, 13, 19, 31, 37, 43, 61, 67, 73, 79, … A002476
6n + 5 5, 11, 17, 23, 29, 41, 47, 53, 59, 71, … A007528
8n + 1 17, 41, 73, 89, 97, 113, 137, 193, 233, 241, … A007519
8n + 3 3, 11, 19, 43, 59, 67, 83, 107, 131, 139, … A007520
8n + 5 5, 13, 29, 37, 53, 61, 101, 109, 149, 157, … A007521
8n + 7 7, 23, 31, 47, 71, 79, 103, 127, 151, 167, … A007522
10n + 1 11, 31, 41, 61, 71, 101, 131, 151, 181, 191, … A030430
10n + 3 3, 13, 23, 43, 53, 73, 83, 103, 113, 163, … A030431
10n + 7 7, 17, 37, 47, 67, 97, 107, 127, 137, 157, … A030432
10n + 9 19, 29, 59, 79, 89, 109, 139, 149, 179, 199, … A030433
12n + 1 13, 37, 61, 73, 97, 109, 157, 181, 193, 229, ... A068228
12n + 5 5, 17, 29, 41, 53, 89, 101, 113, 137, 149, ... A040117
12n + 7 7, 19, 31, 43, 67, 79, 103, 127, 139, 151, ... A068229
12n + 11 11, 23, 47, 59, 71, 83, 107, 131, 167, 179, ... A068231

Distribution

Since the primes thin out, on average, in accordance with the prime number theorem, the same must be true for the primes in arithmetic progressions. It is natural to ask about the way the primes are shared between the various arithmetic progressions for a given value of d (there are d of those, essentially, if we do not distinguish two progressions sharing almost all their terms). The answer is given in this form: the number of feasible progressions modulo d — those where a and d do not have a common factor > 1 — is given by Euler's totient function

Further, the proportion of primes in each of those is

For example, if d is a prime number q, each of the q − 1 progressions

(all except )

contains a proportion 1/(q − 1) of the primes.

When compared to each other, progressions with a quadratic nonresidue remainder have typically slightly more elements than those with a quadratic residue remainder (Chebyshev's bias).

History

In 1737, Euler related the study of prime numbers to what is known now as the Riemann zeta function: he showed that the value reduces to a ratio of two infinite products, Π p / Π (p–1), for all primes p, and that the ratio is infinite.[1][2] In 1775, Euler stated the theorem for the cases of a + nd, where a = 1.[3] This special case of Dirichlet's theorem can be proven using cyclotomic polynomials.[4] The general form of the theorem was first conjectured by Legendre in his attempted unsuccessful proofs of quadratic reciprocity[5] — as Gauss noted in his Disquisitiones Arithmeticae[6] — but it was proved by Dirichlet (1837) with Dirichlet L-series. The proof is modeled on Euler's earlier work relating the Riemann zeta function to the distribution of primes. The theorem represents the beginning of rigorous analytic number theory.

Atle Selberg (1949) gave an elementary proof.

Proof

Dirichlet's theorem is proved by showing that the value of the Dirichlet L-function (of a non-trivial character) at 1 is nonzero. The proof of this statement requires some calculus and analytic number theory (Serre 1973). The particular case a = 1 (i.e., concerning the primes that are congruent to 1 modulo some n) can be proven by analyzing the splitting behavior of primes in cyclotomic extensions, without making use of calculus (Neukirch 1999, §VII.6).

Generalizations

The Bunyakovsky conjecture generalizes Dirichlet's theorem to higher-degree polynomials. Whether or not even simple quadratic polynomials such as x2 + 1 (known from Landau's fourth problem) attain infinitely many prime values is an important open problem.

The Dickson's conjecture generalizes Dirichlet's theorem to more than one polynomial.

The Schinzel's hypothesis H generalizes these two conjectures, i.e. generalizes to more than one polynomial with degree larger than one.

In algebraic number theory, Dirichlet's theorem generalizes to Chebotarev's density theorem.

Linnik's theorem (1944) concerns the size of the smallest prime in a given arithmetic progression. Linnik proved that the progression a + nd (as n ranges through the positive integers) contains a prime of magnitude at most cdL for absolute constants c and L. Subsequent researchers have reduced L to 5.

An analogue of Dirichlet's theorem holds in the framework of dynamical systems (T. Sunada and A. Katsuda, 1990).

Shiu showed that any arithmetic progression satisfying the hypothesis of Dirichlet's theorem will in fact contain arbitrarily long runs of consecutive prime numbers.[7]

See also

Notes

  1. ^ Euler, Leonhard (1737). "Variae observationes circa series infinitas" [Various observations about infinite series]. Commentarii Academiae Scientiarum Imperialis Petropolitanae. 9: 160–188.; specifically, Theorema 7 on pp. 172–174.
  2. ^ Sandifer, C. Edward, The Early Mathematics of Leonhard Euler (Washington, D.C.: The Mathematical Association of America, 2007), p. 253.
  3. ^ Leonhard Euler, "De summa seriei ex numeris primis formatae 1/3 − 1/5 + 1/7 + 1/11 − 1/13 − 1/17 + 1/19 + 1/23 − 1/29 + 1/31 etc. ubi numeri primi formae 4n − 1 habent signum positivum, formae autem 4n + 1 signum negativum" (On the sum of series [composed] of prime numbers arranged 1/3 − 1/5 + 1/7 + 1/11 − 1/13 − 1/17 + 1/19 + 1/23 − 1/29 + 1/31 etc., where the prime numbers of the form 4n − 1 have a positive sign, whereas [those] of the form 4n + 1 [have] a negative sign.) in: Leonhard Euler, Opuscula analytica (St. Petersburg, Russia: Imperial Academy of Sciences, 1785), vol. 2, pp. 240–256; see p. 241. From p. 241: "Quoniam porro numeri primi praeter binarium quasi a natura in duas classes distinguuntur, prouti fuerint vel formae 4n + 1, vel formae 4n − 1, dum priores omnes sunt summae duorum quadratorum, posteriores vero ab hac proprietate penitus excluduntur: series reciprocae ex utraque classes formatae, scillicet: 1/5 + 1/13 + 1/17 + 1/29 + etc. et 1/3 + 1/7 + 1/11 + 1/19 + 1/23 + etc. ambae erunt pariter infinitae, id quod etiam de omnibus speciebus numerorum primorum est tenendum. Ita si ex numeris primis ii tantum excerpantur, qui sunt formae 100n + 1, cuiusmodi sunt 101, 401, 601, 701, etc., non solum multitudo eorum est infinita, sed etiam summa huius seriei ex illis formatae, scillicet: 1/101 + 1/401 + 1/601 + 1/701 + 1/1201 + 1/1301 + 1/1601 + 1/1801 + 1/1901 + etc. etiam est infinita." (Since, further, prime numbers larger than two are divided as if by Nature into two classes, according as they were either of the form 4n + 1, or of the form 4n − 1, as all of the first are sums of two squares, but the latter are thoroughly excluded from this property: reciprocal series formed from both classes, namely: 1/5 + 1/13 + 1/17 + 1/29 + etc. and 1/3 + 1/7 + 1/11 + 1/19 + 1/23 + etc. will both be equally infinite, which [property] likewise is to be had from all types of prime numbers. Thus, if there be chosen from the prime numbers only those that are of the form 100n + 1, of which kind are 101, 401, 601, 701, etc., not only the set of these is infinite, but likewise the sum of the series formed from that [set], namely: 1/101 + 1/401 + 1/601 + 1/701 + 1/1201 + 1/1301 + 1/1601 + 1/1801 + 1/1901 + etc. likewise is infinite.)
  4. ^ Neukirch (1999), §I.10, Exercise 1.
  5. ^ See:
    • Le Gendre (1785) "Recherches d'analyse indéterminée" (Investigations of interdeterminate analysis), Histoire de l'Académie royale des sciences, avec les mémoires de mathématique et de physique, pp. 465–559; see especially p. 552. From p. 552: "34. Remarque. Il seroit peut-être nécessaire de démontrer rigoureusement une chose que nous avons supposée dans plusieurs endroits de cet article, savoir, qu'il y a une infinité de nombres premiers compris dans tous progression arithmétique, dont le premier terme & la raison sont premiers entr'eux, ou, ce qui revient au même, dans la formule 2mx + μ, lorsque 2m & μ n'ont point de commun diviseur. Cette proposition est assez difficile à démontrer, cependant on peut s'assurer qu'elle est vraie, en comparant la progression arithmétique dont il s'agit, à la progression ordinaire 1, 3, 5, 7, &c. Si on prend un grand nombre de termes de ces progressions, le même dans les deux, & qu'on les dispose, par exemple, de manière que le plus grand terme soit égal & à la même place de part & d'autre; on verra qu'en omettant de chaque côté les multiples de 3, 5, 7, &c. jusqu'à un certain nombre premier p, il doit rester des deux côtés le même nombre de termes, ou même il en restera moins dans la progression 1, 3, 5, 7, &c. Mais comme dans celle-ci, il reste nécessairement des nombres premiers, il en doit rester aussi dans l'autre." (34. Remark. It will perhaps be necessary to prove rigorously something that we have assumed at several places in this article, namely, that there is an infinitude of prime numbers included in every arithmetic progression, whose first term and common difference are co-prime, or, what amounts to the same thing, in the formula 2mx + μ, when 2m and μ have no common divisors at all. This proposition is rather difficult to prove, however one may be assured that it is true, by comparing the arithmetic progression being considered to the ordinary progression 1, 3, 5, 7, etc. If one takes a great number of terms of these progressions, the same [number of terms] in both, and if one arranges them, for example, in a way that the largest term be equal and at the same place in both; one will see that by omitting from each the multiples of 3, 5, 7, etc., up to a certain prime number p, there should remain in both the same number of terms, or even there will remain fewer of them in the progression 1, 3, 5, 7, etc. But as in this [set], there necessarily remain prime numbers, there shall also remain some in the other [set].)
    • A. M. Legendre, Essai sur la Théorie des Nombres (Paris, France: Duprat, 1798), Introduction, pp. 9–16. From p. 12: "XIX. … En général, a étant un nombre donné quelconque, tout nombres impair peut être représenté par la formule 4ax ± b, dans laquelle b est impair et moindre que 2a. Si parmi tous les valeurs possibles de b on retranche celles qui ont un commun diviseur avec a, les formes restantes 4ax ± b comprendront tous les nombres premiers partagé, … " (XIX. … In general, a being any given number, all odd numbers can be represented by the formula 4ax ± b, in which b is odd and less than 2a. If among all possible values of b one removes those that have a common divisor with a, the remaining formulas 4ax ± b include all prime numbers among them … )
    • A. M. Legendre, Essai sur la Théorie des Nombres, 2nd ed. (Paris, France: Courcier, 1808), p. 404. From p. 404: "Soit donnée une progression arithmétique quelconque A − C, 2A − C, 3A − C, etc., dans laquelle A et C sont premiers entre eux; soit donnée aussi une suite θ, λ, μ … ψ, ω, composée de k nombres premiers impairs, pris à volonté et disposés dans un order quelconque; si on appelle en général π(z) le zième terme de la suite naturelle des nombres premiers 3, 5, 7, 11, etc., je dis que sur π(k-1) termes consécutifs de la progression proposée, il y en aura au moins un qui ne sera divisible par aucun des nombres premiers θ, λ, μ … ψ, ω." (Let there be given any arithmetic progression AC, 2AC, 3AC, etc., in which A and C are prime among themselves [i.e., coprime]; let there be given also a series θ, λ, μ … ψ, ω composed of k odd prime numbers, taken at will and arranged in any order; if one calls in general π(z) the zth term of the natural series of prime numbers 3, 5, 7, 11, etc., I claim that among the π(k−1) consecutive terms of the proposed progression, there will be at least one of them that will not be divisible by any of the prime numbers θ, λ, μ … ψ, ω.) This assertion was proven false in 1858 by Anthanase Louis Dupré (1808–1869). See:
  6. ^ Carl Friedrich Gauss, Disquisitiones arithmeticae (Leipzig, (Germany): Gerhard Fleischer, Jr., 1801), Section 297, pp. 507–508. From pp. 507–508: "Ill. Le Gendre ipse fatetur, demonstrationem theorematis, sub tali forma kt + l, designantibus k, l numeros inter se primos datos, t indefinitum, certo contineri numeros primos, satis difficilem videri, methodumque obiter addigitat, quae forsan illuc conducere possit; multae vero disquisitiones praeliminares necessariae nobis videntur, antequam hacce quidem via ad demonstrationem rigorosam pervenire liceat." (The illustrious Le Gendre himself admits [that] the proof of the theorem — [namely, that] among [integers of] the form kt + l, [where] k and l denote given integers [that are] prime among themselves [i.e., coprime] [and] t denotes a variable, surely prime numbers are contained — seems difficult enough, and incidentally, he points out a method that could perhaps lead to it; however, many preliminary and necessary investigations are [fore]seen by us before this [conjecture] may indeed reach the path to a rigorous proof.)
  7. ^ Shiu, D. K. L. (2000). "Strings of congruent primes". J. London Math. Soc. 61 (2): 359–373. doi:10.1112/s0024610799007863.

References

Read other articles:

  Medusa melena de león ártica Estado de conservación No evaluadoTaxonomíaReino: AnimaliaFilo: CnidariaClase: ScyphozoaOrden: SemaeostomeaeFamilia: CyaneidaeGénero: CyaneaEspecie: C. capillata(Linnaeus, 1758)Sinonimia Cyanea arctica Péron & Lesueur, 1810 Cyanea baltica Péron & Lesueur, 1810 Cyanea borealis Péron & Lesueur, 1810 Cyanea versicolor L. Agassiz, 1862 Medusa capillata Linnaeus, 1758 [editar datos en Wikidata] La medusa melena de león ártica o me...

Karel Teige Karel Teige en 1925Información personalNacimiento 13 de diciembre de 1900República Checa República Checa, PragaFallecimiento 1 de octubre de 1951 (50 años)PragaSepultura Cementerio de Vyšehrad Nacionalidad ChecaFamiliaPadre Josef Teige Información profesionalÁrea FotografíaAños activo 1920-1951Movimientos Futurismo, Constructivismo, SurrealismoGénero Fotografía arquitectónicaPartido político Partido Comunista de Checoslovaquia [editar datos en Wikidata]...

غراميات شارع الأعشى[1][2] معلومات الكتاب المؤلف بدرية البشر اللغة العربية الناشر دار الساقي في لندن تاريخ النشر 2013 النوع الأدبي رواية الموضوع خيال التقديم نوع الطباعة ورقي غلاف عادي عدد الصفحات 287 القياس 21 المواقع ردمك 978-1855-16-984-5 تعديل مصدري - تعديل   غراميات شارع ال

Tippeligaen 2016 Généralités Sport Football Édition 72e Date Du 11 mars au 6 novembre 2016 Participants 16 équipes Hiérarchie Niveau inférieur Championnat de Norvège de football D2 Palmarès Tenant du titre Rosenborg BK Promu(s) en début de saison Sogndal (champion de D2 2015)SK Brann Vainqueur Rosenborg Ballklub Meilleur(s) buteur(s) Christian Gytkjær (19) Navigation Saison 2015 Saison 2017 modifier La saison 2016 de Tippeligaen est la soixante-douzième édition du championnat de ...

Cet article est une ébauche concernant la Hongrie et l’héraldique. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Article principal : Armorial des localités de Hongrie. Cette page donne les armoiries (figures et blasonnements) des localités du comitat de Baranya. Sommaire : Haut - A B C D E F G H I J K L M N O P Q R S T U V W X Y Z A Abaliget Blason Détails Le statut officiel du blason reste à ...

Zug am Seeufer bei Überlingen Bodenseegürtelbahn ist eine Bezeichnung für mehrere, aneinander anschließende Eisenbahnstrecken rund um den Bodensee.[1][2][3][4] Sie wurde um 1900 geprägt, als sich der Eisenbahnring um den See schloss. Der geschlossene Aufbau wurde vor allem auf deutscher Seite von den einzelstaatlichen Interessen verzögert.[5] Die Bodenseegürtelbahn besteht aus folgenden Teilabschnitten mit jeweils eigener Kilometrierung und Bauge...

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: America's Got Talent season 6 – news · newspapers · books · scholar · JSTOR (April 2022) (Learn how and when to remove this template message) Season of television series America's Got TalentSeason 6Hosted byNick CannonJudges Piers Morgan Sharon Osbourn...

Structure of the Japanese writing system This article is about the modern writing system and its history. For an overview of the entire language, see Japanese language. For the use of Latin letters to write Japanese, see Romanization of Japanese. JapaneseJapanese novel using kanji kana majiri bun (text with both kanji and kana), the most general orthography for modern Japanese. Ruby characters (or furigana) are also used for kanji words (in modern publications these would generally be omitted...

Pakistani TV series or programme MunkirNida Khan (left) and Osman Khalid ButtGenreDramaWritten byZafar MairajDirected byNadeem SiddiquiCountry of originPakistanOriginal languageUrduNo. of seasons1No. of episodes24ProductionRunning time35 minutesProduction companyEveryday EntertainmentOriginal releaseNetworkTv OneRelease12 February (2017-02-12) –30 July 2017 (2017-07-30) Munkir (Urdu: منکر) is a Pakistani dramatic romance TV show. This drama is directed by Nadeem Sidd...

BudinosSetting and usageinternational auxiliary language for speakers of Finno-Ugric languagesEthnicityFinno-UgriansPurposeConstructed language BudinosSourcesUdmurt, HungarianLanguage codesISO 639-3qbu (local use)IETFart-x-budinos (local use) Budinos is a constructed language designed by to be an international auxiliary language for speakers of Finno-Ugric languages. Budinos builds mainly on Udmurt and Hungarian but also has features from Finnish, Estonian, Mari, and other related languages. ...

2002 video gameTom Clancy's Ghost Recon: Desert SiegeDeveloper(s)Red Storm EntertainmentPublisher(s)Ubi Soft[a]SeriesTom Clancy's Ghost ReconPlatform(s)Microsoft WindowsReleaseNA: March 26, 2002[2]EU: March 29, 2002[1]Genre(s)Tactical shooterMode(s)Single-player Tom Clancy's Ghost Recon: Desert Siege is an expansion of Tom Clancy's Ghost Recon developed by Red Storm Entertainment and published by Ubi Soft for Microsoft Windows. It is also an unlockable campaign in the ...

Stade lavalloisSaison 2012-2013 Généralités Couleurs Tango et noir Stade Stade Francis-Le-Basser18 467 places Président Philippe Jan Entraîneur Philippe Hinschberger Résultats Ligue 2 17e 42 points (10V, 12N, 16D)(47 buts pour, 54 buts contre) Coupe de France 8e tourÉliminé par l'EA Guingamp (1-2) Coupe de la Ligue 2e tourÉliminé par l'Angers SCO (0-2) Meilleur buteur Toutes compétitions: Julien Viale (10) En Ligue 2: Julien Viale (10) Meilleur passeur Toutes compét...

Вербицький Георгій Миколайович Народження 27 жовтня 1920(1920-10-27)Ширяєве, Ананьївський повіт, Херсонська губернія, Українська СРРСмерть 12 серпня 2011(2011-08-12) (90 років)  Київ, УкраїнаКраїна  СРСР УкраїнаНавчання Київський національний університет будівництва і архітект�...

В Википедии есть статьи о других людях с фамилией Ламберт. Альберт Ламберт Дата рождения 6 декабря 1875(1875-12-06)[1] Место рождения Сент-Луис, Миссури, США Дата смерти 12 ноября 1946(1946-11-12)[1] (70 лет) Место смерти Сент-Луис, Миссури, США Страна  США Род деятельности и...

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Desember 2022. Atlantique Air Assistance IATA ICAO Kode panggil L5 TLB TRIPLE ALPHA Didirikan 1989 Hub Bandar Udara Nantes Atlantique Hub Kedua Bandar Udara Paris - Le Bourget Armada 6 Destinasi Charter / ACMI / Evasan / Fret Kantor pusat La Chevrolière, Prancis Or...

Class of guided missile destroyers in the Chinese People's Liberation Army Navy Guiyang (119) in the East China Sea Class overview NameType 052D destroyer Builders Jiangnan Shipyard Dalian Shipbuilding Industry Company Operators People's Liberation Army Navy Preceded byType 052C BuiltFebruary 2012–present [2] In serviceMarch 2014–present[1] Building6 (August 2022)[3] Active25 (August 2022)[3] General characteristics TypeGuided-missile destroyer Displac...

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Glory Times – news · newspapers · books · scholar · JSTOR (July 2016) (Learn how and when to remove this template message) 1995 compilation album by PortisheadGlory TimesCompilation album by PortisheadReleased7 June 1995Recorded1994GenreTrip hopLength46...

Remy Prìncipe Nazionalità Italia GenereMusica classica Modifica dati su Wikidata · Manuale Remy Prìncipe, all'anagrafe Remigio Prìncipe (Venezia, 25 agosto 1889 – Roma, 5 dicembre 1977), è stato un violinista italiano. Indice 1 Biografia 2 Concerti 3 Composizioni e revisioni 3.1 Opere proprie 3.2 Revisioni Musicali 4 Note 5 Bibliografia 6 Voci correlate 7 Altri progetti 8 Collegamenti esterni Biografia Remy Prìncipe fu un violinista e didatta italiano. Allievo di France...

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Synergy Shaman's Harvest album – news · newspapers · books · scholar · JSTOR (March 2010) (Learn how and when to remove this template message) 2002 studio album by Shaman's HarvestSynergyStudio album by Shaman's HarvestReleasedApril 28, 2002GenreAl...

Movement in East Pakistan Sheikh Mujibur Rahman announcing the six points in Lahore on 5 February 1966 The six point movement was a movement in East Pakistan, spearheaded by Sheikh Mujibur Rahman, which called for greater autonomy for East Pakistan.[1][2] The movement's main agenda was to realize the six demands put forward by a coalition of Bengali nationalist political parties in 1966, to end the perceived exploitation of East Pakistan by the West Pakistani rulers.[3]...