The Johnson–Corey–Chaykovsky reaction (sometimes referred to as the Corey–Chaykovsky reaction or CCR) is a chemical reaction used in organic chemistry for the synthesis of epoxides, aziridines, and cyclopropanes. It was discovered in 1961 by A. William Johnson and developed significantly by E. J. Corey and Michael Chaykovsky. The reaction involves addition of a sulfur ylide to a ketone, aldehyde, imine, or enone to produce the corresponding 3-membered ring. The reaction is diastereoselective favoring trans substitution in the product regardless of the initial stereochemistry. The synthesis of epoxides via this method serves as an important retrosynthetic alternative to the traditional epoxidation reactions of olefins.
The reaction is most often employed for epoxidation via methylene transfer, and to this end has been used in several notable total syntheses (See Synthesis of epoxides below). Additionally detailed below are the history, mechanism, scope, and enantioselective variants of the reaction. Several reviews have been published.[1][2][3][4][5][6]
History
The original publication by Johnson concerned the reaction of 9-dimethylsulfonium fluorenylide with substituted benzaldehyde derivatives. The attempted Wittig-like reaction failed and a benzalfluorene oxide was obtained instead, noting that "reaction between the sulfur ylid and benzaldehydes did not afford benzalfluorenes as had the phosphorus and arsenic ylids."[7]
The subsequent development of (dimethyloxosulfaniumyl)methanide, (CH3)2SOCH2 and (dimethylsulfaniumyl)methanide, (CH3)2SCH2 (known as Corey–Chaykovsky reagents) by Corey and Chaykovsky as efficient methylene-transfer reagents established the reaction as a part of the organic canon.[8]
The transdiastereoselectivity observed results from the reversibility of the initial addition, allowing equilibration to the favored antibetaine over the syn betaine. Initial addition of the ylide results in a betaine with adjacent charges; density functional theory calculations have shown that the rate-limiting step is rotation of the central bond into the conformer necessary for backside attack on the sulfonium.[1]
The degree of reversibility in the initial step (and therefore the diastereoselectivity) depends on four factors, with greater reversibility corresponding to higher selectivity:[1]
Stability of the substrate with higher stability leading to greater reversibility by favoring the starting material over the betaine.
Stability of the ylide with higher stability similarly leading to greater reversibility.
Steric hindrance in the betaine with greater hindrance leading to greater reversibility by disfavoring formation of the intermediate and slowing the rate-limiting rotation of the central bond.
Solvation of charges in the betaine by counterions such as lithium with greater solvation allowing more facile rotation in the betaine intermediate, lowering the amount of reversibility.
Scope
The application of the Johnson–Corey–Chaykovsky reaction in organic synthesis is diverse. The reaction has come to encompass reactions of many types of sulfur ylides with electrophiles well beyond the original publications. It has seen use in a number of high-profile total syntheses, as detailed below, and is generally recognized as a powerful transformative tool in the organic repertoire.
Types of ylides
Many types of ylides can be prepared with various functional groups both on the anionic carbon center and on the sulfur. The substitution pattern can influence the ease of preparation for the reagents (typically from the sulfonium halide, e.g. trimethylsulfonium iodide) and overall reaction rate in various ways. The general format for the reagent is shown on the right.[1]
Use of a sulfoxonium allows more facile preparation of the reagent using weaker bases as compared to sulfonium ylides. (The difference being that a sulfoxonium contains a doubly bonded oxygen whereas the sulfonium does not.) The former react slower due to their increased stability. In addition, the dialkylsulfoxideby-products of sulfoxonium reagents are greatly preferred to the significantly more toxic, volatile, and odorous dialkylsulfide by-products from sulfonium reagents.[1]
The vast majority of reagents are monosubstituted at the ylide carbon (either R1 or R2 as hydrogen). Disubstituted reagents are much rarer but have been described:[1]
If the ylide carbon is substituted with an electron-withdrawing group (EWG), the reagent is referred to as a stabilized ylide. These, similarly to sulfoxonium reagents, react much slower and are typically easier to prepare. These are limited in their usefulness as the reaction can become prohibitively sluggish: examples involving amides are widespread, with many fewer involving esters and virtually no examples involving other EWG's. For these, the related Darzens reaction is typically more appropriate.
If the ylide carbon is substituted with an aryl or allyl group, the reagent is referred to as a semi-stabilized ylide. These have been developed extensively, second only to the classical methylene reagents (R1=R2=H). The substitution pattern on aryl reagents can heavily influence the selectivity of the reaction as per the criteria above.
If the ylide carbon is substituted with an alkyl group the reagent is referred to as an unstabilized ylide. The size of the alkyl groups are the major factors in selectivity with these reagents.
The R-groups on the sulfur, though typically methyls, have been used to synthesize reagents that can perform enantioselective variants of the reaction (See Variations below). The size of the groups can also influence diastereoselectivity in alicyclic substrates.[1]
Synthesis of epoxides
Reactions of sulfur ylides with ketones and aldehydes to form epoxides are by far the most common application of the Johnson–Corey–Chaykovsky reaction. Examples involving complex substrates and 'exotic' ylides have been reported, as shown below.[10][11]
The synthesis of aziridines from imines is another important application of the Johnson–Corey–Chaykovsky reaction and provides an alternative to amine transfer from oxaziridines. Though less widely applied, the reaction has a similar substrate scope and functional group tolerance to the carbonyl equivalent. The examples shown below are representative; in the latter, an aziridine forms in situ and is opened via nucleophilic attack to form the corresponding amine.[3][10]
Synthesis of cyclopropanes
For addition of sulfur ylides to enones, higher 1,4-selectivity is typically obtained with sulfoxonium reagents than with sulfonium reagents. One explanation based on the HSAB theory states that it is because sulfoxonium reagents have a less concentrated negative charge on the carbon atom (softer), so it prefers 1,4-attack on the softer nucleophilic site. Another explanation supported by density functional theory (DFT) studies suggests an irreversible 1,4-attack leading to the cyclopropane is energetically favored versus a reversible 1,2-attack that would lead to the epoxide.[14] With extended conjugated systems 1,6-addition tends to predominate over 1,4-addition.[3][10] Many electron-withdrawing groups have been shown promote the cyclopropanation including ketones, esters, amides (the example below involves a Weinreb amide), sulfones, nitro groups, phosphonates, isocyanides and even some electron deficient heterocycles.[15]
Other reactions
In addition to the reactions originally reported by Johnson, Corey, and Chaykovsky, sulfur ylides have been used for a number of related homologation reactions that tend to be grouped under the same name.
With epoxides and aziridines the reaction serves as a ring-expansion to produce the corresponding oxetane or azetidine. The long reaction times required for these reactions prevent them from occurring as significant side reactions when synthesizing epoxides and aziridines.[10]
Living polymerizations using trialkylboranes as the catalyst and (dimethyloxosulfaniumyl)methanide as the monomer have been reported for the synthesis of various complex polymers.[16]
Enantioselective variations
The development of an enantioselective (i.e. yielding an enantiomeric excess, which is labelled as "ee") variant of the Johnson–Corey–Chaykovsky reaction remains an active area of academic research. The use of chiral sulfides in a stoichiometric fashion has proved more successful than the corresponding catalytic variants, but the substrate scope is still limited in all cases. The catalytic variants have been developed almost exclusively for enantioselective purposes; typical organosulfide reagents are not prohibitively expensive and the racemic reactions can be carried out with equimolar amounts of ylide without raising costs significantly. Chiral sulfides, on the other hand, are more costly to prepare, spurring the advancement of catalytic enantioselective methods.[2]
Stoichiometric reagents
The most successful reagents employed in a stoichiometric fashion are shown below. The first is a bicyclic oxathiane that has been employed in the synthesis of the β-adrenergic compound dichloroisoproterenol (DCI) but is limited by the availability of only one enantiomer of the reagent. The synthesis of the axial diastereomer is rationalized via the 1,3-anomeric effect which reduces the nucleophilicity of the equatoriallone pair. The conformation of the ylide is limited by transannular strain and approach of the aldehyde is limited to one face of the ylide by steric interactions with the methyl substituents.[5][2]
The other major reagent is a camphor-derived reagent developed by Varinder Aggarwal of the University of Bristol. Both enantiomers are easily synthesized, although the yields are lower than for the oxathiane reagent. The ylide conformation is determined by interaction with the bridgehead hydrogens and approach of the aldehyde is blocked by the camphor moiety. The reaction employs a phosphazene base to promote formation of the ylide.[5][2]
Catalytic reagents
Catalytic reagents have been less successful, with most variations suffering from poor yield, poor enantioselectivity, or both. There are also issues with substrate scope, most having limitations with methylene transfer and aliphaticaldehydes. The trouble stems from the need for a nucleophilic sulfide that efficiently generates the ylide which can also act as a good leaving group to form the epoxide. Since the factors underlying these desiderata are at odds, tuning of the catalyst properties has proven difficult. Shown below are several of the most successful catalysts along with the yields and enantiomeric excess for their use in synthesis of (E)-stilbene oxide.[5][2]
Aggarwal has developed an alternative method employing the same sulfide as above and a novel alkylation involving a rhodiumcarbenoid formed in situ. The method too has limited substrate scope, failing for any electrophiles possessing basic substituents due to competitive consumption of the carbenoid.[2]
^ abcGololobov, Y. G.; Nesmeyanov, A. N.; lysenko, V. P.; Boldeskul, I. E. (1987). "Twenty-five years of dimethylsulfoxonium ethylide (corey's reagent)". Tetrahedron. 43 (12): 2609–2651. doi:10.1016/s0040-4020(01)86869-1.
^ abcdAggarwal, Varinder K.; Ford, J. Gair; Fonguerna, Sílvia; Adams, Harry; Jones, Ray V. H.; Fieldhouse, Robin (1998-08-08). "Catalytic Asymmetric Epoxidation of Aldehydes. Optimization, Mechanism, and Discovery of Stereoelectronic Control Involving a Combination of Anomeric and Cieplak Effects in Sulfur Ylide Epoxidations with Chiral 1,3-Oxathianes". Journal of the American Chemical Society. 120 (33): 8328–8339. doi:10.1021/ja9812150.
^Johnson, A.W.; LaCount, R.B. (1961). "The Chemistry of Ylids. VI. Dimethylsulfonium Fluorenylide—A Synthesis of Epoxides". J. Am. Chem. Soc.83 (2): 417–423. doi:10.1021/ja01463a040.
^Corey, E. J.; Chaykovsky, M. (1965). "Dimethyloxosulfonium Methylide ((CH3)2SOCH2) and Dimethylsulfonium Methylide ((CH3)2SCH2). Formation and Application to Organic Synthesis". J. Am. Chem. Soc. 87 (6): 1353–1364. doi:10.1021/ja01084a034.
^Kawashima, T.; Okazaki, R. (1996). "Synthesis and Reactions of the Intermediates of the Wittig, Peterson, and their Related Reactions". Synlett (7): 600–608. doi:10.1055/s-1996-5540.
^Danishefsky, S. J.; Masters, J. J.; Young, W. B.; Link, J. T.; Snyder, L. B.; Magee, T. V.; Jung, D. K.; Isaacs, R. C. A.; Bornmann, W. G.; Alaimo, C. A.; Coburn, C. A.; Di Grandi, M. J. (1996). "Total Synthesis of Baccatin III and Taxol". Journal of the American Chemical Society. 118 (12): 2843–2859. doi:10.1021/ja952692a.
مؤتمر سينيكا فولزمعلومات عامةجانب من جوانب حقوق المرأة سُمِّي باسم Seneca Falls (en) المكان Seneca Falls (en) تاريخ البدء 19 يوليو 1848 تاريخ الانتهاء 20 يوليو 1848 المشاركون إليزابيث كادي ستانتونلوكريشا موتفريدريك دوغلاس لديه جزء أو أجزاء إعلان المشاعر تعديل - تعديل مصدري - تعديل ويكي بيانات ...
Diagram sederhana dari inti utama dalam sebagian besar ragam hipotesis multi-sumber. Hipotesis multi-sumber adalah sebuah solusi yang diusulkan untuk masalah sinoptik, yang menyatakan bahwa Injil Matius, Injil Markus dan Injil Lukas tak secara langsung saling berkegantungan namun masing-masing diturunkan dari gabungan berbeda dari dokumen-dokumen sebelumnya. Hipotesis tersebut meliputi sekelompok teori berbeda dalam hal alam dan hubungan dokumen-dokumen sebelumnya. Bentuk awal dari teori ters...
Town in Massachusetts, United StatesDover, MassachusettsTownThe Dover Church FlagSealNickname: Town of FriendshipDover is one of the smallest towns in Norfolk county.Coordinates: 42°14′45″N 71°17′00″W / 42.24583°N 71.28333°W / 42.24583; -71.28333Country United StatesState MassachusettsCounty NorfolkSettled1635Incorporated1836Government • TypeOpen town meetingArea • Total39.9 km2 (15.4 sq mi) •...
1894–1895 war between China and Japan First Sino-Japanese WarPart of the Century of HumiliationTop to bottom: Qing ship burning during the Battle of Pungdo Japanese troops firing at Qing craft at the Battle of the Yalu River Depiction of Japanese cavalry attacking the Chinese army at the Battle of Pyongyang Date25 July 1894 – 17 April 1895(8 months, 2 weeks and 2 days)LocationChina (Manchuria and Shandong Peninsula), Korea, Yellow SeaResult Japanese victoryTerritorialc...
French footballer (1884–1921) Louis Mesnier Louis Mesnier circa 1900Personal informationFull name Louis MesnierDate of birth 1 January 1884Date of death 10 October 1921(1921-10-10) (aged 37)Position(s) WingerSenior career*Years Team Apps (Gls) CA Paris – (–) FC Paris – (–)International career1904–1913 France 14 (6) *Club domestic league appearances and goals Louis Mesnier (15 December 1884 – 10 October 1921) was a French international footballer.[1] He is primar...
Firefly α Медиафайлы на Викискладе Firefly Alpha (Firefly α) — ракета-носитель малого класса, разрабатываемая американско-украинской компанией Firefly Aerospace. Предназначена для запуска малых спутников, включая CubeSat[1]. Согласно расчётам, разработка ракеты обойдётся в 100 млн до�...
Ten artykuł dotyczy miasta we Włoszech. Zobacz też: inne znaczenia. Pescara Herb Flaga Państwo Włochy Region Abruzja Zarządzający Marco Alessandrini↗ Powierzchnia 34 km² Wysokość 0 m n.p.m. Populacja (2018)• liczba ludności• gęstość 119 820[1]3487 os./km² Nr kierunkowy 085 Kod pocztowy 65100 Tablice rejestracyjne PE Położenie na mapie AbruzjiPescara Położenie na mapie WłochPescara 42°28′N 14°13′E/42,466667 14,216667 Mu...
Robert Zemeckis Zemeckis en 2015Información personalNombre de nacimiento Robert Lee Zemeckis Nacimiento 14 de mayo de 1952 (72 años)Chicago, Illinois, Estados UnidosNacionalidad EstadounidenseLengua materna Inglés FamiliaCónyuge Mary Ellen Trainor (1980-2000)Leslie Zemeckis (2001-presente)Hijos 3EducaciónEducado en Universidad del Sur de CaliforniaEscuela de Artes Cinematográficas de la Universidad del Sur de CaliforniaUniversidad del Norte de IllinoisFenger Academy High School Inf...
В Википедии есть статьи о других людях с фамилией Бермас. Виктор Кондратьевич Бермас Дата рождения 28 апреля 1927(1927-04-28) Место рождения Берёзки, Кривоозёрский район, Николаевская область, СССР Дата смерти 9 июля 2008(2008-07-09) (81 год) Место смерти Белая Калитва, Ростовская об�...
Leudeville La mairie. Blason Administration Pays France Région Île-de-France Département Essonne Arrondissement Palaiseau Intercommunalité Communauté de communes du Val d'Essonne Maire Mandat Jean-Pierre Lecomte 2020-2026 Code postal 91630 Code commune 91332 Démographie Gentilé Leudevillois Populationmunicipale 1 559 hab. (2021 ) Densité 199 hab./km2 Géographie Coordonnées 48° 33′ 55″ nord, 2° 19′ 34″ est Altitude Min. 74 ...
Genus of butterflies Charis Anius metalmark (C.anius)male Antioquia, Colombia Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Arthropoda Class: Insecta Order: Lepidoptera Family: Riodinidae Tribe: Riodinini Genus: CharisHübner, 1819[1] Synonyms[2] Charmona Stichel, 1910 Charmonana Hemming, 1967 Charmonona Strand, 1932 Sarota Westwood, 1851 Charis is a genus of the Riodinini tribe of metalmark butterflies (family Riodinidae). Nineteen species have been id...
Group of four destroyers for the German Navy Z4 Richard Beitzen, 1937 Class overview NameType 1934 destroyer BuildersDeutsche Werke Operators Kriegsmarine Succeeded byType 1934A destroyer Cost54,749,000 marks Built1934–1937 In service1937–1947 Completed4 Lost3 Scrapped1 General characteristics TypeDestroyer Displacement 2,223 long tons (2,259 t) (Standard load) 3,156 long tons (3,207 t) (Full load) Length 114 m (374 ft) (p.p.) 116.25 m (381 ft 5...
Fortuna Liga2017-2018 Généralités Sport Football Organisateur(s) Slovenský futbalový zväz (SFZ) Édition 25e Lieu(x) Slovaquie Date du 22 juillet 2017au 19 mai 2018 Participants 12 Matchs joués 198 Site web officiel Site officiel Hiérarchie Hiérarchie 1re division Niveau inférieur DOXXbet liga Palmarès Tenant du titre MŠK Žilina Promu(s) en début de saison FC Nitra Vainqueur Spartak Trnava (1er titre) Navigation Édition précédente Édition suivante modifier La saison 2017-20...
موسيقى العالممعلومات عامةصنف فرعي من موسيقىموسيقى شائعة تعديل - تعديل مصدري - تعديل ويكي بيانات موسيقى العالم (باللغة الإنجليزية World Music) نوع من الموسيقى والغناء والرقص ذات بعد عالمي، وتضم مجموعة كبيرة من الموسيقى الفولكلورية والقومية لمختلف البلدان والشعوب والقوميات.[1&...
16th-century play Titlepage for Jack Juggler. Jack Juggler (full title: A new Enterlued for Chyldren to playe, named Jacke Jugeler, both wytte, and very pleysent) is an anonymous sixteenth-century comic interlude, considered to be one of the earliest examples of comedy in English alongside Ralph Roister Doister and Gammer Gurton's Needle. The play is believed to have been written sometime between 1553 and 1561 and was first published in 1562.[1] The author of the play is uncertain, ho...