Toshikazu Sunada

Toshikazu Sunada
Born1948 (age 75–76)
Tokyo, Japan
Alma materTokyo Institute of Technology
Awards
  • 1987 Iyanaga Award of Mathematical Society of Japan
  • 2013 Publication Prize of Mathematical Society of Japan
  • 2017 Hiroshi Fujiwara Prize for Mathematical Sciences
  • 2018 Prize for Science and Technology (the Commendation for Science and Technology by the Minister of Education, Culture, Sports, Science and Technology)
  • 2019 the 1st Kodaira Kunihiko Prize
Scientific career
FieldsMathematics (Spectral geometry and discrete geometric analysis)
InstitutionsNagoya University
Tokyo University
Tohoku University
Meiji University

Toshikazu Sunada (砂田 利一, Sunada Toshikazu, born September 7, 1948) is a Japanese mathematician and author of many books and essays on mathematics and mathematical sciences. He is professor emeritus of both Meiji University and Tohoku University. He is also distinguished professor of emeritus at Meiji in recognition of achievement over the course of an academic career. Before he joined Meiji University in 2003, he was professor of mathematics at Nagoya University (1988–1991), at the University of Tokyo (1991–1993), and at Tohoku University (1993–2003). Sunada was involved in the creation of the School of Interdisciplinary Mathematical Sciences at Meiji University and is its first dean (2013–2017). Since 2019, he is President of Mathematics Education Society of Japan.

Main work

Sunada's work covers complex analytic geometry, spectral geometry, dynamical systems, probability, graph theory, discrete geometric analysis, and mathematical crystallography. Among his numerous contributions, the most famous one is a general construction of isospectral manifolds (1985), which is based on his geometric model of number theory, and is considered to be a breakthrough in the problem proposed by Mark Kac in "Can one hear the shape of a drum?" (see Hearing the shape of a drum). Sunada's idea was taken up by Carolyn S. Gordon, David Webb, and Scott A. Wolpert when they constructed a counterexample for Kac's problem. For this work, Sunada was awarded the Iyanaga Prize of the Mathematical Society of Japan (MSJ) in 1987. He was also awarded Publication Prize of MSJ in 2013, the Hiroshi Fujiwara Prize for Mathematical Sciences in 2017, the Prize for Science and Technology (the Commendation for Science and Technology by the Minister of Education, Culture, Sports, Science and Technology) in 2018, and the 1st Kodaira Kunihiko Prize in 2019.

In a joint work with Atsushi Katsuda, Sunada also established a geometric analogue of Dirichlet's theorem on arithmetic progressions in the context of dynamical systems (1988). One can see, in this work as well as the one above, how the concepts and ideas in totally different fields (geometry, dynamical systems, and number theory) are put together to formulate problems and to produce new results.

His study of discrete geometric analysis includes a graph-theoretic interpretation of Ihara zeta functions, a discrete analogue of periodic magnetic Schrödinger operators as well as the large time asymptotic behaviors of random walk on crystal lattices. The study of random walk led him to the discovery of a "mathematical twin" of the diamond crystal out of an infinite universe of hypothetical crystals (2005). He named it the K4 crystal due to its mathematical relevance (see the linked article). What was noticed by him is that the K4 crystal has the "strong isotropy property", meaning that for any two vertices x and y of the crystal net, and for any ordering of the edges adjacent to x and any ordering of the edges adjacent to y, there is a net-preserving congruence taking x to y and each x-edge to the similarly ordered y-edge. This property is shared only by the diamond crystal (the strong isotropy should not be confused with the edge-transitivity or the notion of symmetric graph; for instance, the primitive cubic lattice is a symmetric graph, but not strongly isotropic). The K4 crystal and the diamond crystal as networks in space are examples of “standard realizations”, the notion introduced by Sunada and Motoko Kotani as a graph-theoretic version of Albanese maps (Abel-Jacobi maps) in algebraic geometry.

For his work, see also Isospectral, Reinhardt domain, Ihara zeta function, Ramanujan graph, quantum ergodicity, quantum walk.

Selected publications by Sunada

  • T. Sunada, Holomorphic equivalence problem for bounded Reinhardt domains, Mathematische Annalen 235 (1978), 111–128
  • T. Sunada, Rigidity of certain harmonic mappings, Inventiones Mathematicae 51 (1979), 297–307
  • J. Noguchi and T. Sunada, Finiteness of the family of rational and meromorphic mappings into algebraic varieties, American Journal of Mathematics 104 (1982), 887–900
  • T. Sunada, Riemannian coverings and isospectral manifolds, Annals of Mathematics 121 (1985), 169–186
  • T. Sunada, L-functions and some applications, Lecture Notes in Mathematics 1201 (1986), Springer-Verlag, 266–284
  • A. Katsuda and T. Sunada, Homology and closed geodesics in a compact Riemann surface, American Journal of Mathematics 110(1988), 145–156
  • T. Sunada, Unitary representations of fundamental groups and the spectrum of twisted Laplacians, Topology 28 (1989), 125–132
  • A. Katsuda and T. Sunada, Closed orbits in homology classes, Publications Mathématiques de l'IHÉS 71 (1990), 5–32
  • M. Nishio and T. Sunada, Trace formulae in spectral geometry, Proc. ICM-90 Kyoto, Springer-Verlag, Tokyo, (1991), 577–585
  • T. Sunada, Quantum ergodicity, Trend in Mathematics, Birkhauser Verlag, Basel, 1997, 175–196
  • M. Kotani and T. Sunada, Albanese maps and an off diagonal long time asymptotic for the heat kernel, Communications in Mathematical Physics 209 (2000), 633–670
  • M. Kotani and T. Sunada, Spectral geometry of crystal lattices, Contemporary Mathematics 338 (2003), 271–305
  • T. Sunada, Crystals that nature might miss creating, Notices of the American Mathematical Society 55 (2008), 208–215
  • T. Sunada, Discrete geometric analysis, Proceedings of Symposia in Pure Mathematics (ed. by P. Exner, J. P. Keating, P. Kuchment, T. Sunada, A. Teplyaev), 77 (2008), 51–86
  • K. Shiga and T. Sunada, A Mathematical Gift, III, American Mathematical Society
  • T. Sunada, Lecture on topological crystallography, Japan Journal of Mathematics 7 (2012), 1–39
  • T. Sunada, Topological Crystallography, With a View Towards Discrete Geometric Analysis, Springer, 2013, ISBN 978-4-431-54176-9 (print) ISBN 978-4-431-54177-6 (online)
  • T. Sunada, Generalized Riemann sums, in From Riemann to Differential Geometry and Relativity, Editors: Lizhen Ji, Athanase Papadopoulos, Sumio Yamada, Springer (2017), 457–479
  • T. Sunada, Topics on mathematical crystallography, Proceedings of the symposium Groups, graphs and random walks, London Mathematical Society Lecture Note Series 436, Cambridge University Press, 2017, 473–513
  • T. Sunada, From Euclid to Riemann and beyond, in Geometry in History, Editors: S. G. Dani, Athanase Papadopoulos, Springer (2019), 213–304

References

  • Atsushi Katsuda and Polly Wee Sy,[1], An overview of Sunada's work
  • Meiji U. Homepage (Mathematics Department) [2]
  • David Bradley, [3], Diamond's chiral chemical cousin
  • M. Itoh et al., New metallic carbon crystal, Phys. Rev. Lett. 102, 055703 (2009)[4]
  • Diamond twin, Meiji U. Homepage [5]

Read other articles:

1994 soundtrack album by Various artistsA Low Down Dirty Shame (soundtrack)Soundtrack album by Various artistsReleasedNovember 8, 1994Recorded1993–1994Length74:45LabelJiveHollywoodProducer Barry Hankerson (exec.) Adam A-Plus Carter Mike Chapman Cold 187um K. Fingers Fu-Schnickens James Jimmy Jam Harris Terry Lewis Robert Kelly Lyvio G. Organized Konfusion Pimp C Erick Sermon Trent Thomas Touré Singles from A Low Down Dirty Shame Down 4 WhatevaReleased: October 12, 1994 Get the Girl...

 

Deb TalanTalan tampil di NYC pada tanggal 22 April 2006.Informasi latar belakangNama lahirDeborah Ruth TalanLahir27 Januari 1968 (umur 56)AsalMassachusetts, Amerika SerikatGenreIndie folk, pop-folkPekerjaanPenyanyi-penulis laguInstrumenVokal, gitarTahun aktif1994–sekarangLabelNettwerk, Happyhead MusicArtis terkaitThe Weepies, Stephen Kellogg and the Sixers, HummingfishSitus webtheweepies.com Deb Talan adalah seorang penulis lagu Amerika Serikat. Ia lahir di Massachusetts barat. Talan m...

 

ليون غاست (بالإنجليزية: Leon Gast)‏   غاست خلال شهر يونيو 2010    معلومات شخصية الميلاد سنة 1936   جيرسي سيتي  الوفاة 8 مارس 2021 (84–85 سنة)[1]  وودستوك  [لغات أخرى]‏  مواطنة الولايات المتحدة  الحياة العملية المدرسة الأم جامعة كولومبيا  المهنة كاتب س...

Akame ga Kill!Gambar sampul manga volume pertama yang menampilkan Akameアカメが斬る!(Akame ga Kiru!)GenreLaga, fantasi gelap MangaPengarangTakahiroIlustratorTetsuya TashiroPenerbitSquare EnixPenerbit bahasa InggrisNA Yen PressPenerbit bahasa IndonesiaElex Media Komputindo (Level Comics)ImprintGC JokerMajalahGangan JokerDemografiShōnenTerbitMaret 20, 2010 – Desember 22, 2016Volume15 (Daftar volume) MangaAkame ga Kill! ZeroPengarangTakahiroIlustratorKei ToruPenerbitSquare EnixPenerbit ...

 

Kereta api Feeder Wonogiri Kereta api Bengawan Wonogiri sering disebut “Kereta Feeder Wonogiri merupakan satu dari dua dari sejarah pemakai jalur antara Stasiun Purwosari hingga Stasiun Wonogiri. Setiap harinya kereta ini hanya membawa 1 atau 2 kereta penumpang, karena jumlah penumpang yang sangat minim. Jalur kereta api Solo-Wonogiri melintasi jalan protokol Jl. Slamet Riyadi, Solo. Karena itu menjadi keunikan tersendiri karena berjalan berdampingan dengan kendaraan lainnya. Setiap hari ke...

 

Voce principale: Coppa Davis 2024. Coppa Davis 2024 Competizione Coppa Davis Sport Tennis Edizione 112ª Organizzatore ITF Date Play-off:2 - 4 febbraio 2024Turno principale:Settembre 2024 Cronologia della competizione 2023 Manuale Il Gruppo Mondiale II 2024 è il terzo livello della Coppa Davis 2024. La competizione si divide in due turni: nel primo turno (play-off) si sono affronteranno 24 nazioni; le 12 vincitrici giocheranno nel turno principale contro le perdenti dei play-off del Gruppo ...

Racing video game 2015 video gameDiRT RallyDeveloper(s)CodemastersPublisher(s)CodemastersSeriesDirtEngineEgo Engine 4.0Platform(s)WindowsPlayStation 4Xbox OneLinuxmacOSReleaseWindows7 December 2015PS4, Xbox One5 April 2016Linux2 March 2017[1]macOS16 November 2017Genre(s)Racing simulationMode(s)Single-player, multiplayer Dirt Rally (stylised as DiRT Rally) is a racing simulation video game developed and published by Codemasters for Windows. A Steam Early Access version of the game was ...

 

غنت-وفلجم 2005 تفاصيل السباقسلسلة67. غنت-وفلجممنافسةبرو تور 2005التاريخ6 أبريل 2005المسافات208 كمالبلد بلجيكانقطة البدايةدينز [الإنجليزية]‏نقطة النهايةوفلجمالمنصةالفائز نيكو ماتان (Davitamon-Lotto)الثاني خوان أنطونيو فليتشا (Fassa Bortolo  [لغات أخرى]‏)الثالث دانيلي بيناتي (Lampre...

 

Institut Institut Agama Islam Negeri Antasari, Banjarmasin Politeknik Politeknik Negeri Banjarmasin Politeknik Negeri Tanah Laut Politeknik Kesehatan Kemenkes Banjarmasin Universitas Universitas Lambung Mangkurat, Banjarmasin lbs Daftar perguruan tinggi swasta di Indonesia menurut provinsiSumatra Aceh Bengkulu Jambi Kepulauan Riau Kepulauan Bangka Belitung Lampung Riau Sumatera Barat Sumatera Selatan Sumatera Utara Jawa Banten Jakarta Jawa Barat Jawa Tengah Jawa Timur Yogyakarta Nusa Tenggara...

星洲网网站类型新闻网站语言简体中文總部 马来西亚雪兰莪州八打灵再也Semangat路19号(星洲日报总部)持有者世华多媒体有限公司編輯卜亚烈网址www.sinchew.com.my商业性质是注册选择性(个人新闻空间)推出时间2000年4月21日,​24年前​(2000-04-21)內容許可保有版权 星洲网,是一家马来西亚线上免费综合新闻网站,也是马来西亚销售量最高的中文报《星洲日报》...

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Care Bears: Adventures in Care-a-lot – news · newspapers · books · scholar · JSTOR (October 2011) (Learn how and when to remove this message) American TV series or program Care Bears: Adventures in Care-a-lotGenreAnimated seriesBased onCare Bears: Oopsy Does It...

 

Second largest lake in Sweden VätternWest to east view of the lake including Visingsö in the foregroundVätternCoordinates58°24′N 14°36′E / 58.400°N 14.600°E / 58.400; 14.600Primary outflowsMotala strömCatchment area4,503 km2 (1,739 sq mi)Basin countriesSwedenSurface area1,912 km2 (738 sq mi)[1]Average depth41 m (135 ft)[1]Max. depth128 m (420 ft)[1]Water volume77.0 km3 (18.5...

此條目需要編修,以確保文法、用詞、语气、格式、標點等使用恰当。 (2018年8月31日)請按照校對指引,幫助编辑這個條目。(幫助、討論) Jo Malone London公司類型子公司成立 英国伦敦創辦人祖·馬隆产业化妆品產品香薰,卫浴母公司雅诗兰黛公司 (1999–)网站Jo Malone London祖·玛珑(Jo Malone London)是英国香水和香味蠟燭品牌,以其豪華蠟燭、沐浴產品和香水而聞名。 歷史 19...

 

Polissena SforzaSignora consorte di RiminiStemma In carica1442-1449 PredecessoreGinevra d'Este SuccessoreIsotta degli Atti NascitaMortara, 1428 MorteRimini, 1º giugno 1449 SepolturaRimini Luogo di sepolturaTempio malatestiano DinastiaSforza PadreFrancesco Sforza MadreGiovanna d'Acquapendente ConsorteSigismondo Pandolfo Malatesta FigliGaleotto, Giovanna Ducato di MilanoCasato degli Sforza Francesco I Figli Galeazzo Maria Ippolita Maria Filippo Maria Sforza Maria Ludovico Maria Elisabett...

 

Romanian rhythmic gymnast Andreea VerdesVerdes in 2024Personal informationFull nameAndreea VerdesCountry represented RomaniaBorn (2000-10-18) 18 October 2000 (age 23)Iași, RomaniaDisciplineRhythmic gymnasticsLevelSenior EliteYears on national team2017–presentClubCorrado Iași Club[1]Head coach(es)Catalina RaduAssistant coach(es)Constantin Radu Andreea Verdes (born 18 October 2000) is a Romanian individual rhythmic gymnast. Personal life She was introduced to rhy...

California historic landmark See also: Irvine, California § History Old Town IrvineOld Town IrvineLocationIrvine, CaliforniaCoordinates33°40′31″N 117°45′28″W / 33.675330555°N 117.7579111111°W / 33.675330555; -117.7579111111Built1887 California Historical LandmarkDesignatedNovember 11, 1991Reference no.1004 Location of Old Town Irvine in California Irvine Ranch Bean warehouse and a temporary train station in 1895 Irvine bean warehouse in 1922 Irvi...

 

石正露 性别男国籍 中华人民共和国政党 中国共产党军衔中国人民解放军中将石正露(1963年2月—),湖北省大冶县大箕铺镇人,中国人民解放军中将。 曾任陆军第54集团军第127师副师长。2008年任装甲第11师师长,曾率部参加汶川大地震灾区救灾抢险任务,次年升任54集团军参谋长。2012年11月,任陆军第54集团军副军长。2014年9月,升任济南军区副参谋长。2014年12月,...

 

For the main characters that appear in Mario-adjacent franchise Donkey Kong, see List of Donkey Kong characters. A request that this article title be changed to List of Mario characters is under discussion. Please do not move this article until the discussion is closed. A selection of Mario characters (L-R): Goomba, Koopa Paratroopa, Wario, Princess Daisy, Toad, Donkey Kong, Princess Peach, Mario, Bowser, Luigi, Yoshi, Rosalina, Waluigi, Boo, and Koopa Troopa The Mario franchise is a vi...

Nepenthes Burbidgeae merupakan jenis/spesies dari genus kantong semar (Nepenthes).[1] Tumbuhan ini dikenal sebagai tumbuhan karnivora yang dapat hidup di daerah dataran tinggi dengan ketinggian lebih dari 100 meter di atas permukaan laut.[2] Kantong semar jenis Burbidgeae berhabitat di Gunung Kinabalu, Sabah, Malaysia.[3] Temperatur yang cocok untuk tumbuhan ini adalah sekitar 21o - 27o C pada siang hari dan 12o - 18o C pada malam hari.[4] Kantong semar burbidg...

 

For other uses, see Las Vegas (disambiguation). City in New Mexico, United StatesLas Vegas, New MexicoCityOld Town Las Vegas, New MexicoLocation of Las Vegas, New MexicoCoordinates: 35°36′15″N 105°13′21″W / 35.60417°N 105.22250°W / 35.60417; -105.22250CountryUnited StatesStateNew MexicoCountySan MiguelGovernment • TypeMayor-council government • MayorDavid Romero [1] • City ManagerWilliam Taylor [2]Area[...