Marcel Riesz

Marcel Riesz
Riesz c. 1930.
Born(1886-11-16)16 November 1886
Died4 September 1969(1969-09-04) (aged 82)
NationalityHungarian
Known forRiesz–Thorin theorem
M. Riesz extension theorem
F. and M. Riesz theorem
Riesz potential
Riesz function
Riesz transform
Riesz mean
Scientific career
FieldsMathematics
InstitutionsLund University
Doctoral advisorLipót Fejér
Doctoral studentsHarald Cramér
Otto Frostman
Lars Gårding
Einar Carl Hille
Lars Hörmander
Olof Thorin

Marcel Riesz (Hungarian: Riesz Marcell [ˈriːs ˈmɒrt͡sɛll]; 16 November 1886 – 4 September 1969) was a Hungarian mathematician, known for work on summation methods, potential theory, and other parts of analysis, as well as number theory, partial differential equations, and Clifford algebras. He spent most of his career in Lund, Sweden.

Marcel is the younger brother of Frigyes Riesz, who was also an important mathematician and at times they worked together (see F. and M. Riesz theorem).

Biography

Marcel Riesz was born in Győr, Austria-Hungary. He was the younger brother of the mathematician Frigyes Riesz. In 1904, he won the Loránd Eötvös competition.[1] Upon entering the Budapest University, he also studied in Göttingen, and the academic year 1910-11 he spent in Paris. Earlier, in 1908, he attended the 1908 International Congress of Mathematicians in Rome. There he met Gösta Mittag-Leffler, in three years, Mittag-Leffler would offer Riesz to come to Sweden.[2]

Riesz obtained his PhD at Eötvös Loránd University under the supervision of Lipót Fejér. In 1911, he moved to Sweden, where from 1911 to 1925 he taught at Stockholm University.

From 1926 to 1952, he was a professor at Lund University. According to Lars Gårding, Riesz arrived in Lund as a renowned star of mathematics, and for a time his appointment may have seemed like an exile. Indeed, there was no established school of mathematics in Lund at the time. However, Riesz managed to turn the tide and make the academic atmosphere more active.[3][2]

Retired from the Lund University, he spent 10 years at universities in the United States. As a visiting research professor, he worked in Maryland, Chicago, etc.[3][2]

After ten years of intense work with little rest, he suffered a breakdown. Riesz returned to Lund in 1962. After a long illness, he died there in 1969.[3][2]

Riesz was elected a member of the Royal Swedish Academy of Sciences in 1936.[3]

Mathematical work

Classical analysis

The work of Riesz as a student of Fejér in Budapest was devoted to trigonometric series:

One of his results states that if

and if the Fejer means of the series tend to zero, then all the coefficients an and bn are zero.[1]

His results on summability of trigonometric series include a generalisation of Fejér's theorem to Cesàro means of arbitrary order.[4] He also studied the summability of power and Dirichlet series, and coauthored a book Hardy & Riesz (1915) on the latter with G.H. Hardy.[1]

In 1916, he introduced the Riesz interpolation formula for trigonometric polynomials, which allowed him to give a new proof of Bernstein's inequality.[5]

He also introduced the Riesz function Riesz(x), and showed that the Riemann hypothesis is equivalent to the bound {{{1}}} as x → ∞, for any ε > 0.[6]

Together with his brother Frigyes Riesz, he proved the F. and M. Riesz theorem, which implies, in particular, that if μ is a complex measure on the unit circle such that

then the variation |μ| of μ and the Lebesgue measure on the circle are mutually absolutely continuous.[5][7]

Functional-analytic methods

Part of the analytic work of Riesz in the 1920s used methods of functional analysis.

In the early 1920s, he worked on the moment problem, to which he introduced the operator-theoretic approach by proving the Riesz extension theorem (which predated the closely related Hahn–Banach theorem).[8][9]

Later, he devised an interpolation theorem to show that the Hilbert transform is a bounded operator in Lp (1 < p < ∞). The generalisation of the interpolation theorem by his student Olaf Thorin is now known as the Riesz–Thorin theorem.[2][10]

Riesz also established, independently of Andrey Kolmogorov, what is now called the Kolmogorov–Riesz compactness criterion in Lp: a subset K ⊂Lp(Rn) is precompact if and only if the following three conditions hold: (a) K is bounded;

(b) for every ε > 0 there exists R > 0 so that

for every fK;

(c) for every ε > 0 there exists ρ > 0 so that

for every yRn with |y| < ρ, and every fK.[11]

Potential theory, PDE, and Clifford algebras

After 1930, the interests of Riesz shifted to potential theory and partial differential equations. He made use of "generalised potentials", generalisations of the Riemann–Liouville integral.[2] In particular, Riesz discovered the Riesz potential, a generalisation of the Riemann–Liouville integral to dimension higher than one.[3]

In the 1940s and 1950s, Riesz worked on Clifford algebras. His 1958 lecture notes, the complete version of which was only published in 1993 (Riesz (1993)), were dubbed by the physicist David Hestenes "the midwife of the rebirth" of Clifford algebras.[12]

Students

Riesz's doctoral students in Stockholm include Harald Cramér and Einar Carl Hille.[3] In Lund, Riesz supervised the theses of Otto Frostman, Lars Gårding, Lars Hörmander, and Olof Thorin.[2]

Publications

  • Hardy, G. H.; Riesz, M. (1915). The general theory of Dirichlet's series. Cambridge University Press. JFM 45.0387.03.
  • Riesz, Marcel (1988). Collected papers. Berlin, New York: Springer-Verlag. ISBN 978-3-540-18115-6. MR 0962287.
  • Riesz, Marcel (1993) [1958]. Clifford numbers and spinors. Fundamental Theories of Physics. Vol. 54. Dordrecht: Kluwer Academic Publishers Group. ISBN 978-0-7923-2299-3. MR 1247961.

References

  1. ^ a b c Horváth, Jean (1982). "L'œuvre mathématique de Marcel Riesz. I" [The mathematical work of Marcel Riesz. I]. Proceedings of the Seminar on the History of Mathematics (in French). 3: 83–121. MR 0651728.
  2. ^ a b c d e f g Peetre, Jaak (1988). Function spaces and applications (Lund, 1986). Lecture Notes in Math. Vol. 1302. Berlin: Springer. pp. 1–10. doi:10.1007/BFb0078859. MR 0942253.
  3. ^ a b c d e f Gårding, Lars (1970). "Marcel Riesz in memoriam". Acta Mathematica. 124: x–xi. doi:10.1007/BF02394565. ISSN 0001-5962. MR 0256837.
  4. ^ Theorem III.5.1 in Zygmund, Antoni (1968). Trigonometric Series (2nd ed.). Cambridge University Press (published 1988). ISBN 978-0-521-35885-9. MR 0933759.
  5. ^ a b Horvath, Jean (1983). "L'œuvre mathématique de Marcel Riesz. II" [The mathematical work of Marcel Riesz. II]. Proceedings of the Seminar on the History of Mathematics (in French). 4: 1–59. MR 0704360. Zbl 0508.01015.
  6. ^ §14.32 in Titchmarsh, E. C. (1986). The theory of the Riemann zeta-function (Second ed.). New York: The Clarendon Press, Oxford University Press. ISBN 0-19-853369-1. MR 0882550.
  7. ^ Putnam, C. R. (1980). "The F. and M. Riesz theorem revisited". Integral Equations Operator Theory. 3 (4): 508–514. doi:10.1007/bf01702313. MR 0595749. S2CID 121969600.
  8. ^ Kjeldsen, Tinne Hoff (1993). "The early history of the moment problem". Historia Math. 20 (1): 19–44. doi:10.1006/hmat.1993.1004. MR 1205676.
  9. ^ Akhiezer, N. I. (1965). The Classical Moment Problem and Some Related Questions in Analysis. Oliver & Boyd.
  10. ^ Gårding, Lars (1997). Some points of analysis and their history. University Lecture Series. Vol. 11. Providence, RI: American Mathematical Society. pp. 31–35. ISBN 0-8218-0757-9. MR 1469493.
  11. ^ Hanche-Olsen, Harald; Holden, Helge (2010). "The Kolmogorov–Riesz compactness theorem". Expositiones Mathematicae. 28 (4): 385–394. arXiv:0906.4883. doi:10.1016/j.exmath.2010.03.001. MR 2734454.
  12. ^ Hestenes, David (2011). "Grassmann's legacy". In Petsche, Hans-Joachim; Lewis, Albert C.; Liesen, Jörg; Russ, Steve (eds.). From Past to Future: Graßmann's Work in Context Graßmann Bicentennial Conference (PDF). Springer.

Read other articles:

Fadia Arafiq Bupati Pekalongan ke-24PetahanaMulai menjabat 27 Juni 2021PresidenJoko WidodoGubernurGanjar PranowoNana Sudjana (Pj.)WakilRiswadi PendahuluAsip KholbihiPenggantiPetahana Wakil Bupati Pekalongan ke-3Masa jabatan2011–2016PresidenSusilo Bambang Yudoyono Joko WidodoGubernurBibit Waluyo Ganjar PranowoBupatiAmat Antono PendahuluH. Wahyudi Pontjo NugrohoPenggantiIr. Hj. Arini Harimurti Informasi pribadiLahirLaila Fathiah23 Mei 1978 (umur 45)Jakarta, IndonesiaKebangsaa...

 

العلاقات التشيلية الكازاخستانية تشيلي كازاخستان   تشيلي   كازاخستان تعديل مصدري - تعديل   العلاقات التشيلية الكازاخستانية هي العلاقات الثنائية التي تجمع بين تشيلي وكازاخستان.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين:...

 

Liga Champions UEFA 2008–2009Stadio Olimpico di Roma menjadi tuan rumah final.Informasi turnamenJadwalpenyelenggaraanKualifikasi:15 Juli – 27 Agustus 2008Kompetisi utama:16 September 2008 – 27 Mei 2009Jumlahtim pesertaKompetisi utama: 32Total: 76Hasil turnamenJuara Barcelona (gelar ke-3)Tempat kedua Manchester UnitedStatistik turnamenJumlahpertandingan125Jumlah gol329 (2,63 per pertandingan)Jumlahpenonton5.004.467 (40.036 per pertandingan)Pencetak golterbanyakLionel Messi (Bar...

American lawyer (1676–1741) For other people named Andrew Hamilton, see Andrew Hamilton (disambiguation). Andrew HamiltonAn 1808 portrait of Hamilton by Adolf Ulrik Wertmüller18th Speaker of the Pennsylvania House of RepresentativesIn office1736–1737In office1741–1749 Personal detailsBornc. 1676Kingdom of ScotlandDied(1741-08-04)August 4, 1741Philadelphia, Pennsylvania, British AmericaSpouseAnne Brown PreesonProfessionLawyerSignature Andrew Hamilton (c.1676 – August 4, 1741) was ...

 

426

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: 426 – news · newspapers · books · scholar · JSTOR (September 2020) (Learn how and when to remove this template message) Calendar year Millennium: 1st millennium Centuries: 4th century 5th century 6th century Decades: 400s 410s 420s 430s 440...

 

Artikel ini membutuhkan judul dalam bahasa Indonesia yang sepadan dengan judul aslinya. Cenote di Hubiku, Yucatan[1] Seorang penyelam yang tengah menyelam di sebuah cenote Cenote[2][3] adalah sebuah gua vertikal atau lubang runtuhan, yang dihasilkan dari runtuhnya batuan dasar batugamping yang mengeluarkan air tanah. Istilah ini secara khusus dikaitkan dengan formasi geologi di Semenanjung Yucatán, Meksiko, di sana cenote biasanya digunakan untuk persediaan air oleh s...

Argentine cheese ReggianitoCountry of originArgentinaSource of milkPasture-fed cowsTextureHard, granularAging time6 months Reggianito is an Argentine cheese that is a very hard, granular, cow's milk cheese. The cheese was developed by Italian immigrants to Argentina who wished to make a cheese reminiscent of their native Parmigiano Reggiano. The name—the Spanish diminutive of Reggiano—refers to the fact that the cheese is produced in small 6.8 kg (15 lb) wheels, rather than the ...

 

Голубянки Самец голубянки икар Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ПервичноротыеБез ранга:ЛиняющиеБез ранга:PanarthropodaТип:ЧленистоногиеПодтип:ТрахейнодышащиеНадкласс:ШестиногиеКласс...

 

Species of shark Crying Izak Conservation status Least Concern  (IUCN 3.1)[1] Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Chordata Class: Chondrichthyes Subclass: Elasmobranchii Subdivision: Selachimorpha Order: Carcharhiniformes Family: Scyliorhinidae Genus: Holohalaelurus Species: H. melanostigma Binomial name Holohalaelurus melanostigmaNorman, 1939 Range of the crying izak Sharks portal The crying Izak (Holohalaelurus melanostigma) is a very rare...

  لمعانٍ أخرى، طالع ضريح بير (توضيح).ضريح بير عليمعلومات عامةنوع المبنى ضريحالمكان لاهيجان[1] المنطقة الإدارية مقاطعة لاهيجان البلد  إيرانالاستعمال ضريح الصفة التُّراثيَّةتصنيف تراثي المعالم الوطنية الإيرانية[1] (2001 – ) تعديل - تعديل مصدري - تعديل ويكي بيانا...

 

  لمعانٍ أخرى، طالع أب (توضيح). أبمعلومات عامةصنف فرعي من والدانإنسان ذكر ممثلة بـ ذكر درجة القرابة 1 لديه جزء أو أجزاء legal father (en) الأب البيولوجيnon-biological father (en) النقيض أمولد تعديل - تعديل مصدري - تعديل ويكي بيانات الأبوة مسؤولية بطابع قدسي العلاقات(الخطوط العريضة) أنواع ا�...

 

Closed railway station in City of Edinburgh, Scotland, UK JoppaRemains of the former Joppa station building.General informationLocationJoppa, EdinburghScotlandCoordinates55°56′50″N 3°06′06″W / 55.9472°N 3.1016°W / 55.9472; -3.1016Grid referenceNT313732Platforms2Other informationStatusDisusedHistoryOriginal companyNorth British RailwayPre-groupingNorth British RailwayPost-groupingLondon and North Eastern RailwayKey dates16 May 1859 (1859-05-16...

American baseball player Baseball player Steve JohnsonJohnson with the Baltimore OriolesPitcherBorn: (1987-08-31) August 31, 1987 (age 36)Baltimore, Maryland, U.S.Batted: RightThrew: RightMLB debutJuly 15, 2012, for the Baltimore OriolesLast appearanceJune 14, 2016, for the Seattle MarinersMLB statisticsWin–loss record6–1Earned run average4.26Strikeouts86 Teams Baltimore Orioles (2012–2013, 2015) Seattle Mariners (2016) Steven David Johnson (born Augus...

 

American academic This biography of a living person needs additional citations for verification. Please help by adding reliable sources. Contentious material about living persons that is unsourced or poorly sourced must be removed immediately from the article and its talk page, especially if potentially libelous.Find sources: Bertell Ollman – news · newspapers · books · scholar · JSTOR (October 2023) (Learn how and when to remove this message) Bertell ...

 

Ankur NayyarAnkur Nayyar dalam peluncuran Sekolah Pertunjukan Seni ITALahir27 Mei 1977 (umur 47)Pathankot, Punjab, IndiaTempat tinggalMumbai, Maharashtra, IndiaKebangsaanIndianPekerjaanaktorTahun aktif2001–sekarangSuami/istriRikita ManujaAnak1 Ankur Nayyar (lahir 27 Mei 1977) adalah aktor televisi dan film India. Dia telah bekerja di banyak acara seperti Kasautii Zindagii Kay, Kashmeer dan Jeet. Dia dikenal karena memainkan peran utama Samman Chaudhary di Sahara One acara Ghar Ek...

This is a list of buildings on Georgetown University campuses. Georgetown University's undergraduate campus and the medical school campus, together comprising the main campus, and the Law Center campus, are located within Washington, D.C. The Main Campus is located in Georgetown, Washington, D.C. between Canal Road, P Street, and Reservoir Road. The Law Center campus is located in downtown DC on New Jersey Avenue, near Union Station. List of buildings Georgetown University buildings Name Sub...

 

L'anomalia eccentrica è il valore angolare ausiliario usato per correlare l'anomalia vera, cioè quella osservata, con quella media,[1][2] cioè quella calcolata. L'anomalia è data dall'angolo E tra la linea degli apsidi e la linea tra il centro geometrico dell'ellisse e la proiezione del pianeta sul cerchio ausiliario di raggio pari al semiasse maggiore dell'ellisse. Nella meccanica celeste questo tipo di anomalia è un parametro angolare che serve per definire la posizione...

 

Zwitserland op de Olympische Spelen Land Zwitserland IOC-landcode SUI NOC Swiss Olympic Association(de) externe link Olympische Zomerspelen 1904 in St. Louis Aantal deelnemers 1 Aantal disciplines 2 MedaillesRang: 8 goud1 zilver0 brons1 totaal2 Zwitserland op de Zomerspelen 1896 · 1900 · 1904 · 1908 · 1912 · 1920 · 1924 · 1928 · 1932 · 1936 · 1948 · 1952 · 1956 · 1960 · 1964 · 1968 · 1972 · 1976 · 1980 · 1984 · 1988 · 1992 · 1996 · 2000 · 2004 · 2008 · 2012 ·...

This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these messages) This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (April 2017) (Learn how and when to remove this message) This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. P...

 

Italian photographer Giuseppe Incorpora (Palermo, 1834-idem, 1914) was an important Italian photographer of 19th century.[1] Interior of Monreale Duomo in Palermo. Palermo's Piazza Pretoria Square. Wikimedia Commons has media related to Giuseppe Incorpora. References ^ Giorgio Bertellini (2010). Italy in Early American Cinema: Race, Landscape, and the Picturesque. Indiana University Press. p. 58. ISBN 978-0-253-22128-5. Authority control databases InternationalISNIVIAFWorldC...