Ramanujan summation

Ramanujan summation is a technique invented by the mathematician Srinivasa Ramanujan for assigning a value to divergent infinite series. Although the Ramanujan summation of a divergent series is not a sum in the traditional sense, it has properties that make it mathematically useful in the study of divergent infinite series, for which conventional summation is undefined.

Summation

Since there are no properties of an entire sum, the Ramanujan summation functions as a property of partial sums. If we take the Euler–Maclaurin summation formula together with the correction rule using Bernoulli numbers, we see that:[clarification needed][further explanation needed]

Ramanujan[1] wrote this again for different limits of the integral and the corresponding summation for the case in which p goes to infinity:

where C is a constant specific to the series and its analytic continuation and the limits on the integral were not specified by Ramanujan, but presumably they were as given above. Comparing both formulae and assuming that R tends to 0 as x tends to infinity, we see that, in a general case, for functions f(x) with no divergence at x = 0:

where Ramanujan assumed By taking we normally recover the usual summation for convergent series. For functions f(x) with no divergence at x = 1, we obtain:

alternatively, applying smoothed sums.

The convergent version of summation for functions with appropriate growth condition is then[citation needed]:

To compare, see Abel–Plana formula.

Ramanujan summation of divergent series

In the following text, indicates "Ramanujan summation". This formula originally appeared in one of Ramanujan's notebooks, without any notation to indicate that it exemplified a novel method of summation.

For example, the of 1 − 1 + 1 − ⋯ is:

Ramanujan had calculated "sums" of known divergent series. It is important to mention that the Ramanujan sums are not the sums of the series in the usual sense,[2][3] i.e. the partial sums do not converge to this value, which is denoted by the symbol In particular, the sum of 1 + 2 + 3 + 4 + ⋯ was calculated as:

Extending to positive even powers, this gave:

and for odd powers the approach suggested a relation with the Bernoulli numbers:

It has been proposed to use of C(1) rather than C(0) as the result of Ramanujan's summation, since then it can be assured that one series admits one and only one Ramanujan's summation, defined as the value in 1 of the only solution of the difference equation that verifies the condition .[4]

This demonstration of Ramanujan's summation (denoted as ) does not coincide with the earlier defined Ramanujan's summation, C(0), nor with the summation of convergent series, but it has interesting properties, such as: If R(x) tends to a finite limit when x → 1, then the series is convergent, and we have

In particular we have:

where γ is the Euler–Mascheroni constant.

Extension to integrals

Ramanujan resummation can be extended to integrals; for example, using the Euler–Maclaurin summation formula, one can write

which is the natural extension to integrals of the Zeta regularization algorithm.

This recurrence equation is finite, since for ,

Note that this involves (see zeta function regularization)

.

With , the application of this Ramanujan resummation lends to finite results in the renormalization of quantum field theories.

See also

References

  1. ^ Bruce C. Berndt, Ramanujan's Notebooks, Ramanujan's Theory of Divergent Series, Chapter 6, Springer-Verlag (ed.), (1939), pp. 133-149.
  2. ^ "The Euler–Maclaurin formula, Bernoulli numbers, the zeta function, and real-variable analytic continuation". Retrieved 20 January 2014.
  3. ^ "Infinite series are weird". Retrieved 20 January 2014.
  4. ^ Éric Delabaere, Ramanujan's Summation, Algorithms Seminar 2001–2002, F. Chyzak (ed.), INRIA, (2003), pp. 83–88.

Read other articles:

Komando Pasukan Gerak CepatLambang KopasgatAktif17 Oktober 1947Negara IndonesiaCabangPasukan KhususTipe unitSatuan Tempur DirgantaraPeran Pasukan terjun payung (Paratrooper) Operasi khusus Komando Pertahanan udara Combat Control Combat Control Air Traffic Combat SAR Jump Master Pertahanan Pangkalan AU Jumlah personelRahasiaBagian dari Komando Operasi Udara NasionalMarkasMargahayu, Bandung Jawa BaratJulukanKorps Baret JinggaMotoKarmanye Vadikaraste Mafalesu Kadatjana (Bekerja Tanpa Menghitung ...

 

 

يوليوس كوهن (كرة يد) معلومات شخصية الاسم الكامل Julius Kühn الميلاد 1 أبريل 1993 (العمر 30 سنة)دويسبورغ، ألمانيا الطول 1.98 م (6 قدم 6 بوصة)* مركز اللعب ظهير أيسر الجنسية ألماني الحياة العملية معلومات النادي النادي الحالي نادي غومرسباخ لكرة اليد الرقم 5 المهنة لاعب كرة يد  الر...

 

 

Elly Rachmat Yasin Anggota Dewan Perwakilan Rakyat Republik IndonesiaPetahanaMulai menjabat 1 Oktober 2019PresidenJoko WidodoPerolehan suara71.884Daerah pemilihanJawa Barat V Informasi pribadiLahir9 Desember 1966 (umur 57)Bogor, Jawa BaratPartai politikPPPSuami/istriRahmat YasinPekerjaanPolitikusSunting kotak info • L • B Elly Rachmat Yasin (lahir 9 Desember 1966) adalah politikus Indonesia yang menjabat sebagai anggota DPR-RI periode 2019–2024. Ia mewakili daerah pem...

Town in Virginia, United StatesBridgewater, VirginiaTownGenerations Park in Bridgewater, Virginia FlagSealMotto: Inter Se Succurrimus (Enriching One Another)Location of Bridgewater within the Rockingham CountyBridgewater, VirginiaLocation in VirginiaShow map of VirginiaBridgewater, VirginiaBridgewater, Virginia (the United States)Show map of the United StatesCoordinates: 38°23′12″N 78°58′11″W / 38.38667°N 78.96972°W / 38.38667; -78.96972CountryUnited ...

 

 

Sultan Mahmud Badaruddin Jayo WikramoSultan Palembang Ke-4Berkuasa1724–1757PendahuluSultan Agung KomaruddinPenerusSultan Ahmad Najamuddin IInformasi pribadiKelahiranKesultanan PalembangKematian1757Kesultanan Palembang.WangsaAzmatkhanNama lengkapSultan Mahmud Badaruddin Jayo WikramoNama takhtaSultan Mahmud Badaruddin IAyahSultan Muhammad MansyurIbuNyimas Sunguk dari Negeri Kesultanan JambiAnak Sultan Ahmad Najamuddin I Agama Islam Sultan Mahmud Badaruddin Jayo Wikramo atau Sultan Mahmud Bada...

 

 

United Kingdom legislationSerious Crime Act 2007[1]Parliament of the United KingdomLong titleAn Act to make provision about serious crime prevention orders; to create offences in respect of the encouragement or assistance of crime; to enable information to be shared or processed to prevent fraud or for purposes relating to proceeds of crime; to enable data matching to be conducted both in relation to fraud and for other purposes; to transfer functions of the Director of the Assets Re...

Disambiguazione – Se stai cercando l'ex calciatore di ruolo centrocampista, vedi Alessandro Mazzola (1969). Sandro Mazzola Mazzola all'Inter nel 1971 Nazionalità  Italia Altezza 179 cm Peso 74 kg Calcio Ruolo Centrocampista, attaccante Termine carriera 1º luglio 1977 Carriera Giovanili 1957-1960 Inter Squadre di club1 1960-1977 Inter417 (116)[1] Nazionale 1963-1974 Italia70 (22) Palmarès  Mondiali di calcio Argento Messico 1970  Europei di calcio Oro Ita...

 

 

FC Baník OstravaCalcio Baníček Segni distintivi Uniformi di gara Casa Trasferta Colori sociali Blu, rosso Dati societari Città Ostrava Nazione  Rep. Ceca Confederazione UEFA Federazione FAČR Campionato 1. liga Fondazione 1922 Presidente Václav Brabec Allenatore Pavel Hapal Stadio Městský stadion Vítkovice / Bazaly(15 123 / 17 400 posti) Sito web www.fcb.cz Palmarès Titoli nazionali 3 Campionati cecoslovacchi1 Campionato ceco Trofei nazionali 3 Coppe di Cecoslovacchia1 Cop...

 

 

Religion in the FSM (2022 estimate)[1]   Catholic (55%)  Protestant (42%)  Other Christian (2%)  Other (1%) Part of a series on theCulture of the Federated States of Micronesia History People Languages Religion Music Sport Symbols Flag Coat of arms National anthem vte St. Endelienta's Cathedral in Kolonia, Pohnpei State Christianity is the predominant religion in the Federated States of Micronesia and represents an integral part of the nation's...

La Lettre aux Français est un procédé de communication politique notamment utilisé par des présidents de la République française ayant souhaité adresser un message au peuple français : en 1988 par François Mitterrand (Lettre à tous les Français), en 2012 par Nicolas Sarkozy (Lettre au peuple français), en 2019 et 2022 par Emmanuel Macron. François Mitterrand Candidat à sa réélection à l'issue d'une cohabitation tendue, le président François Mitterrand fait publier un...

 

 

Turkish dessert For the 1983 Turkish comedy film, see Şekerpare (film). For the Sultan Ibrahim's lady-in-waiting known as Şekerpare, see Şekerpare Hatun. ŞekerpareCourseDessertPlace of originTurkeyMain ingredientsFlour, oil, syrup  Media: Şekerpare Şekerpare (lit. piece of sugar) is one of the popular desserts in the Turkish cuisine.[1] Mainly prepared by baking some soft balls of almond based pastry dipped in thick (optionally) lemon-flavored sugar syrup, şekerpare i...

 

 

2006 television film This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (February 2013) (Learn how and when to remove this message) The Ron Clark StoryDVD coverWritten byAnnie deYoungMax EnscoeDirected byRanda HainesStarringMatthew PerryErnie HudsonTheme music composerMark AdlerCountry of originUnited StatesOriginal languageEnglishProductionProducersJody Brockway...

Municipality in Vaud, SwitzerlandSainte-CroixMunicipalityView of the city from the south FlagCoat of armsLocation of Sainte-Croix Sainte-CroixShow map of SwitzerlandSainte-CroixShow map of Canton of VaudCoordinates: 46°49′N 06°30′E / 46.817°N 6.500°E / 46.817; 6.500CountrySwitzerlandCantonVaudDistrictJura-Nord VaudoisGovernment • MayorSyndicArea[1] • Total39.43 km2 (15.22 sq mi)Elevation1,086 m (3,563 ft)...

 

 

История Канады — история страны, которая занимает северную часть североамериканского континента[1]. Первоначально страна была населена автохтонным населением, затем Канада благодаря иммиграции из Европы превратилась в официально двуязычную федерацию, мирным п�...

 

 

Koda Kumi Driving Hit's 2Album remix karya Kumi KodaDirilis31 Maret 2010Direkam1999–2010GenreHouseLabelRhythm ZoneRZCD-46204 (Jepang)Kronologi Kumi Koda Best: Third Universe/Universe(2010)Best: Third Universe/Universe2010 Koda Kumi Driving Hit's 2(2010) Eternity: Love & Songs(2010)Eternity: Love & Songs2010 Koda Kumi Driving Hit's 2 adalah album remix ketiga yang dirilis oleh penyanyi-penulis lagu Jepang Kumi Koda. Album tersebut dirilis setahun setelah Koda Kumi Driving Hit's ...

American lawyer, politician and judge (1930–2023) For other uses, see Sandra Day O'Connor (disambiguation). Sandra Day O'ConnorOfficial portrait, c. 2002Associate Justice of the Supreme Court of the United StatesIn officeSeptember 25, 1981 – January 31, 2006[1][2]Nominated byRonald ReaganPreceded byPotter StewartSucceeded bySamuel AlitoJudge of the Arizona Court of Appeals for Division OneIn officeDecember 14, 1979 – September 25, 1981Nominate...

 

 

State park in Georgia, United States Walker State Park redirects here. For the park in Kentucky, see Dr. Thomas Walker State Historic Site. Laura S. Walker State ParkLaura Walker State ParkIUCN category III (natural monument or feature)Laura S. Walker State ParkLocation in GeorgiaShow map of GeorgiaLocation in United StatesShow map of the United StatesLocationBrantley County, GeorgiaNearest cityHoboken, GeorgiaCoordinates31°08′31″N 82°13′01″W / 31.142°N 82.217�...

 

 

British actor (1903–1991) Wilfrid Hyde-WhiteHyde-White in Ada (1961)BornWilfrid Hyde White12 May 1903Bourton-on-the-Water, Gloucestershire, EnglandDied6 May 1991(1991-05-06) (aged 87)Woodland Hills, California, United StatesResting placeWater Cemetery, Bourton-on-the-Water, Gloucestershire, EnglandOccupation(s)Actor, singerYears active1934–1983Spouses Blanche Glynne ​ ​(m. 1927; died 1946)​ Ethel Drew ​(m. 1957&#...

交通地理学(こうつうちりがく、イギリス英語: transport geography、アメリカ英語: transportation geography[1])は、交通現象を地域の側面から考察する人文地理学の一分野であり[2]、交通現象を空間的な側面から理解しようとする[3]。 学史 1841年にドイツの地理学者・ヨハン・ゲオルグ・コール(Johann Georg Kohl)が『地表の形態に依従するものとしての人�...

 

 

 GP di Francia 1987 412º GP della storia del Motomondiale8ª prova su 15 del 1987 Data 19 luglio 1987 Nome ufficiale Grand Prix de France Luogo Circuito Bugatti Percorso 4,24 km Clima Pioggia Risultati Classe 500 367º GP nella storia della classe Distanza 29 giri, totale 122,96 km Pole position Giro veloce Christian Sarron Randy Mamola Yamaha in 1'42,38 Yamaha Podio 1. Randy MamolaYamaha 2. Pierfrancesco ChiliHonda 3. Christian SarronYamaha Classe 250 374º GP nella storia della class...