Möbius inversion formula

In mathematics, the classic Möbius inversion formula is a relation between pairs of arithmetic functions, each defined from the other by sums over divisors. It was introduced into number theory in 1832 by August Ferdinand Möbius.[1]

A large generalization of this formula applies to summation over an arbitrary locally finite partially ordered set, with Möbius' classical formula applying to the set of the natural numbers ordered by divisibility: see incidence algebra.

Statement of the formula

The classic version states that if g and f are arithmetic functions satisfying

then

where μ is the Möbius function and the sums extend over all positive divisors d of n (indicated by in the above formulae). In effect, the original f(n) can be determined given g(n) by using the inversion formula. The two sequences are said to be Möbius transforms of each other.

The formula is also correct if f and g are functions from the positive integers into some abelian group (viewed as a Z-module).

In the language of Dirichlet convolutions, the first formula may be written as

where denotes the Dirichlet convolution, and 1 is the constant function 1(n) = 1. The second formula is then written as

Many specific examples are given in the article on multiplicative functions.

The theorem follows because is (commutative and) associative, and 1μ = ε, where ε is the identity function for the Dirichlet convolution, taking values ε(1) = 1, ε(n) = 0 for all n > 1. Thus

.

Replacing by , we obtain the product version of the Möbius inversion formula:

Series relations

Let

so that

is its transform. The transforms are related by means of series: the Lambert series

and the Dirichlet series:

where ζ(s) is the Riemann zeta function.

Repeated transformations

Given an arithmetic function, one can generate a bi-infinite sequence of other arithmetic functions by repeatedly applying the first summation.

For example, if one starts with Euler's totient function φ, and repeatedly applies the transformation process, one obtains:

  1. φ the totient function
  2. φ1 = I, where I(n) = n is the identity function
  3. I1 = σ1 = σ, the divisor function

If the starting function is the Möbius function itself, the list of functions is:

  1. μ, the Möbius function
  2. μ1 = ε where is the unit function
  3. ε1 = 1, the constant function
  4. 11 = σ0 = d = τ, where d = τ is the number of divisors of n, (see divisor function).

Both of these lists of functions extend infinitely in both directions. The Möbius inversion formula enables these lists to be traversed backwards.

As an example the sequence starting with φ is:

The generated sequences can perhaps be more easily understood by considering the corresponding Dirichlet series: each repeated application of the transform corresponds to multiplication by the Riemann zeta function.

Generalizations

A related inversion formula more useful in combinatorics is as follows: suppose F(x) and G(x) are complex-valued functions defined on the interval [1, ∞) such that

then

Here the sums extend over all positive integers n which are less than or equal to x.

This in turn is a special case of a more general form. If α(n) is an arithmetic function possessing a Dirichlet inverse α−1(n), then if one defines

then

The previous formula arises in the special case of the constant function α(n) = 1, whose Dirichlet inverse is α−1(n) = μ(n).

A particular application of the first of these extensions arises if we have (complex-valued) functions f(n) and g(n) defined on the positive integers, with

By defining F(x) = f(⌊x⌋) and G(x) = g(⌊x⌋), we deduce that

A simple example of the use of this formula is counting the number of reduced fractions 0 < a/b < 1, where a and b are coprime and bn. If we let f(n) be this number, then g(n) is the total number of fractions 0 < a/b < 1 with bn, where a and b are not necessarily coprime. (This is because every fraction a/b with gcd(a,b) = d and bn can be reduced to the fraction a/d/b/d with b/dn/d, and vice versa.) Here it is straightforward to determine g(n) = n(n − 1)/2, but f(n) is harder to compute.

Another inversion formula is (where we assume that the series involved are absolutely convergent):

As above, this generalises to the case where α(n) is an arithmetic function possessing a Dirichlet inverse α−1(n):

For example, there is a well known proof relating the Riemann zeta function to the prime zeta function that uses the series-based form of Möbius inversion in the previous equation when . Namely, by the Euler product representation of for

These identities for alternate forms of Möbius inversion are found in.[2] A more general theory of Möbius inversion formulas partially cited in the next section on incidence algebras is constructed by Rota in.[3]

Multiplicative notation

As Möbius inversion applies to any abelian group, it makes no difference whether the group operation is written as addition or as multiplication. This gives rise to the following notational variant of the inversion formula:

Proofs of generalizations

The first generalization can be proved as follows. We use Iverson's convention that [condition] is the indicator function of the condition, being 1 if the condition is true and 0 if false. We use the result that

that is, , where is the unit function.

We have the following:

The proof in the more general case where α(n) replaces 1 is essentially identical, as is the second generalisation.

On posets

For a poset P, a set endowed with a partial order relation , define the Möbius function of P recursively by

(Here one assumes the summations are finite.) Then for , where K is a commutative ring, we have

if and only if

(See Stanley's Enumerative Combinatorics, Vol 1, Section 3.7.) The classical arithmetic Mobius function is the special case of the poset P of positive integers ordered by divisibility: that is, for positive integers s, t, we define the partial order to mean that s is a divisor of t.

Contributions of Weisner, Hall, and Rota

The statement of the general Möbius inversion formula [for partially ordered sets] was first given independently by Weisner (1935) and Philip Hall (1936); both authors were motivated by group theory problems. Neither author seems to have been aware of the combinatorial implications of his work and neither developed the theory of Möbius functions. In a fundamental paper on Möbius functions, Rota showed the importance of this theory in combinatorial mathematics and gave a deep treatment of it. He noted the relation between such topics as inclusion-exclusion, classical number theoretic Möbius inversion, coloring problems and flows in networks. Since then, under the strong influence of Rota, the theory of Möbius inversion and related topics has become an active area of combinatorics.[4]

See also

Notes

  1. ^ Möbius 1832, pp. 105–123
  2. ^ NIST Handbook of Mathematical Functions, Section 27.5.
  3. ^ [On the foundations of combinatorial theory, I. Theory of Möbius Functions|https://link.springer.com/content/pdf/10.1007/BF00531932.pdf]
  4. ^ Bender & Goldman 1975, pp. 789–803

References

  • Apostol, Tom M. (1976), Introduction to analytic number theory, Undergraduate Texts in Mathematics, New York-Heidelberg: Springer-Verlag, ISBN 978-0-387-90163-3, MR 0434929, Zbl 0335.10001
  • Bender, Edward A.; Goldman, J. R. (1975), "On the applications of Möbius inversion in combinatorial analysis", Amer. Math. Monthly, 82 (8): 789–803, doi:10.2307/2319793, JSTOR 2319793
  • Ireland, K.; Rosen, M. (2010), A Classical Introduction to Modern Number Theory, Graduate Texts in Mathematics (Book 84) (2nd ed.), Springer-Verlag, ISBN 978-1-4419-3094-1
  • Kung, Joseph P.S. (2001) [1994], "Möbius inversion", Encyclopedia of Mathematics, EMS Press
  • Möbius, A. F. (1832), "Über eine besondere Art von Umkehrung der Reihen.", Journal für die reine und angewandte Mathematik, 9: 105–123
  • Stanley, Richard P. (1997), Enumerative Combinatorics, vol. 1, Cambridge University Press, ISBN 0-521-55309-1
  • Stanley, Richard P. (1999), Enumerative Combinatorics, vol. 2, Cambridge University Press, ISBN 0-521-56069-1

Read other articles:

 NS19 Stasiun MRT Toa Payoh大巴窑地铁站தோ பயோAngkutan cepatPeron arah utara stasiun MRT NS19 Toa PayohLokasi510 Toa Payoh Lorong 6Singapore 319398Koordinat1°19′57.73″N 103°50′52.11″E / 1.3327028°N 103.8478083°E / 1.3327028; 103.8478083Jalur  Jalur Utara Selatan Jumlah peronPulauJumlah jalur2LayananBus, TaksiKonstruksiJenis strukturBawah tanahTinggi peron2Akses difabelYesInformasi lainKode stasiunNS19SejarahDibuka7 Novembe...

 

Hot, Flat, and Crowded Sampul 2008PengarangThomas FriedmanNegaraAmerika SerikatBahasaInggrisSubjekPemanasan global, energi bersihGenreNon-fiksiPenerbitFarrar, Straus and GirouxTanggal terbit8 September 2008Jenis mediaCetak, buku elektronikHalaman448 hlm.ISBNISBN 978-0312428921Didahului olehThe World Is Flat Diikuti olehThat Used To Be Us  Hot, Flat, and Crowded: Why We Need a Green Revolution—And How It Can Renew America adalah buku karya kolumnis New York Time...

 

Часть серии статей о Холокосте Идеология и политика Расовая гигиена · Расовый антисемитизм · Нацистская расовая политика · Нюрнбергские расовые законы Шоа Лагеря смерти Белжец · Дахау · Майданек · Малый Тростенец · Маутхаузен ·&...

У этого термина существуют и другие значения, см. Ландшафт (значения). Ландшафт Озеро в природном парке Хааня. Ландшафт. Южная Эстония Ландша́фт (нем. Landschaft, вид местности, от Land — земля и schaft — суффикс, выражающий взаимосвязь, взаимозависимость; дословно может быт�...

 

]][[ آرثر سي كلارك (بالإنجليزية: Arthur C. Clarke)‏    معلومات شخصية اسم الولادة (بالإنجليزية: Arthur Charles Clarke)‏  الميلاد 16 ديسمبر 1917 [1][2][3][4][5][6][7]  مينهد  [لغات أخرى]‏  الوفاة 19 مارس 2008 (90 سنة) [8][1][3][6][9]  كولمبو  سب�...

 

Tender emotional response disproportionate to the situation at hand Sentimentalist redirects here. For the American cultural magazine, see Sentimentalist Magazine. For other uses, see Sentimental (disambiguation). This article possibly contains original research. Please improve it by verifying the claims made and adding inline citations. Statements consisting only of original research should be removed. (December 2018) (Learn how and when to remove this template message) Sentimentality origin...

2002 studio album by CandiriaThe C.O.M.A. ImprintStudio album by CandiriaReleasedJuly 2, 20021997 (Beyond Reasonable Doubt)RecordedPurple Light Studios, Brooklyn, New YorkGenre Groove metal[1] hardcore punk[2] jazz[2] hip hop[2] Length65:00 (Beyond Reasonable Doubt)79:00 (2CDs)LabelLakeshore EntertainmentProducerMichael BarileCandiria chronology 300 Percent Density(2001) The C.O.M.A. Imprint(2002) What Doesn't Kill You...(2004) Professional ratingsRevie...

 

У этого термина существуют и другие значения, см. Триест (значения). ГородТриеститал. Trieste Флаг Герб 45°38′00″ с. ш. 13°48′00″ в. д.HGЯO Страна  Италия Область Фриули-Венеция-Джулия Провинция Триест Коммуна Триест Мэр Роберто Дипьяцца История и география Площадь 8...

 

Peru beauty pageant title Miss Grand PeruFormation2014TypeBeauty pageantHeadquartersLimaLocationPeruMembership Miss Grand InternationalOfficial language SpanishNational directorJessica NewtonParent organizationGrupo D'Elite(2016 – Present) Miss Grand Peru is a national beauty pageant title bestowed upon a woman chosen to represent Peru at the annual international pageant, Miss Grand International.[1][2][3] The title was first mentioned in 2014 when a finali...

2011 video game 2011 video gameTekken HybridDeveloper(s)Namco Bandai GamesPublisher(s)Namco Bandai Games[a]SeriesTekkenPlatform(s)PlayStation 3ReleaseNA: November 22, 2011AU: November 24, 2011EU: November 25, 2011JP: December 1, 2011Genre(s)FightingMode(s)Single-player, Multiplayer Tekken Hybrid is a 2011 fighting game collection released exclusively for the PlayStation 3. It consists of the film Tekken: Blood Vengeance (as a Blu-ray 3D format), with a remastered version of Tekken Tag...

 

Red Arrow DinerIndustryDinersFounded1922FounderDavid LamontagneHeadquartersManchester, New Hampshire, United StatesNumber of locations4Areas servedManchester, Londonderry, Nashua, and Concord, New HampshireKey peopleCarol Lawrence (owner, president), George Lawrence (co-owner, vice president), Amanda Wihby (co-owner, chief operations officer)Products Burgers sandwiches steak chicken salads breakfast food soft drinks desserts Websitewww.redarrowdiner.com The Red Arrow Diner is a 24-hour diner ...

 

American journalist (born 1954) For the professor of pathology, see Susan L. Swain. Susan SwainSwain in 2015Born (1954-12-23) December 23, 1954 (age 69)Philadelphia, Pennsylvania, U.S.Alma materUniversity of Scranton (BA)Known forBroadcasting executive at C-SPAN Susan Swain (born December 23, 1954) is an American journalist, author and the co-CEO of C-SPAN.[1] Early years Swain was born December 23, 1954, in Philadelphia, Pennsylvania. Swain was educated in public schoo...

Filipino politician In this Philippine name, the middle name or maternal family name is de Leon and the surname or paternal family name is Olivarez. The HonorableEdwin OlivarezOfficial portrait, 2022Member of the House of Representatives from Parañaque's 1st districtIncumbentAssumed office June 30, 2022Preceded byEric OlivarezIn officeJune 30, 2010 – June 30, 2013Preceded byEduardo ZialcitaSucceeded byEric OlivarezChair of the House Government Enterprises and Privatiz...

 

Final Battle (2016)Poster promosi menampilkan Adam ColeTaglineThe End Is Near...InformasiPromotorRing of HonorTanggal2 Desember 2016TempatHammerstein BallroomLokasiNew York City, New YorkKronologi Bayar-per-tayang Survival of the Fittest (2016) Final Battle (2016) ROH 15th Anniversary Show Kronologi Final Battle 2015 Final Battle (2016) 2017 Final Battle (2016) adalah acara bayar-per-tayang (PPV) gulat profesional Final Battle ke-15 yang diproduksi oleh Ring of Honor (ROH). Acara ini berlangs...

 

Species of flowering plant Penstemon barrettiae Conservation status Imperiled  (NatureServe) Scientific classification Kingdom: Plantae Clade: Tracheophytes Clade: Angiosperms Clade: Eudicots Clade: Asterids Order: Lamiales Family: Plantaginaceae Genus: Penstemon Species: P. barrettiae Binomial name Penstemon barrettiaeA.Gray Penstemon barrettiae is a species of flowering plant in the plantain family known by the common name Barrett's beardtongue or Barrett's penstemon. It is endemi...

Official statement that two people have been married This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Marriage certificate – news · newspapers · books · scholar · JSTOR (September 2008) (Learn how and when to remove this message) Family law Family Marriage and other unions and status Types of marriages Cohabi...

 

Aleksander Kwaśniewski Presiden Polandia ke-3Masa jabatan23 Desember 1995 – 23 Desember 2005Perdana MenteriJózef OleksyWłodzimierz CimoszewiczJerzy BuzekLeszek MillerMarek BelkaKazimierz MarcinkiewiczPendahuluLech WałęsaPenggantiLech KaczyńskiKetua Sosial DemokrasiMasa jabatan30 Januari 1990 – 23 Desember 1995PendahuluJabatan ditiadakanPenggantiJózef OleksyMenteri OlahragaMasa jabatan14 Oktober 1988 – 4 Juli 1989Perdana MenteriMieczysław Rakowski Infor...

 

Pour les articles homonymes, voir Georges II. Georges II de Galicie-VolhynieSceau de Boleslaw-Yuri IITitre de noblesseDucBiographieNaissance 1308Décès 1340VolodymyrFamille Dynastie PiastPère Trojden Ier de CzerskMère Marie de Galicie (en)Fratrie Euphémie de Mazovie (d)Siemovit III de MazovieCasimir Ier de Varsoviemodifier - modifier le code - modifier Wikidata Georges II Boleslas Trojdenowicz (en ukrainien Юрій II Болеслав Тройденович, en polon...

La Rustica U.I.R.stazione ferroviariaLa stazione di La Rustica UIR LocalizzazioneStato Italia LocalitàRoma Coordinate41°54′45.22″N 12°37′18.66″E41°54′45.22″N, 12°37′18.66″E Lineeferrovia Roma-Sulmona-Pescara StoriaStato attualeIn uso Attivazione2005 CaratteristicheTipoStazione in superficiepassante Binari2 GestoriRete Ferroviaria Italiana DintorniQuartiere La Rustica  La Rustica U.I.R. Modifica dati su Wikidata · Manuale Ferrovie LazialiLinea FL2  ...

 

Use of cannabis in Sri Lanka See also: Intoxicants in Sri Lanka Cannabis in Sri LankaLocation of Sri Lanka (dark green)MedicinalLegalRecreationalIllegalSpiritualLegalHempLegal Cannabis in Sri Lanka is legally sold through Ayurveda herbal shops, and can be used for medical and scientific purposes if given a license by the Ministry of Health.[1][2] For recreational usage cannabis is not legal.[3] However, cannabis plays a major role in the traditional culture of the isla...