Constant function

In mathematics, a constant function is a function whose (output) value is the same for every input value.

Basic properties

An example of a constant function is y(x) = 4, because the value of y(x) is 4 regardless of the input value x.

As a real-valued function of a real-valued argument, a constant function has the general form y(x) = c or just y = c. For example, the function y(x) = 4 is the specific constant function where the output value is c = 4. The domain of this function is the set of all real numbers. The image of this function is the singleton set {4}. The independent variable x does not appear on the right side of the function expression and so its value is "vacuously substituted"; namely y(0) = 4, y(−2.7) = 4, y(π) = 4, and so on. No matter what value of x is input, the output is 4.[1]

The graph of the constant function y = c is a horizontal line in the plane that passes through the point (0, c).[2] In the context of a polynomial in one variable x, the constant function is called non-zero constant function because it is a polynomial of degree 0, and its general form is f(x) = c, where c is nonzero. This function has no intersection point with the x-axis, meaning it has no root (zero). On the other hand, the polynomial f(x) = 0 is the identically zero function. It is the (trivial) constant function and every x is a root. Its graph is the x-axis in the plane.[3] Its graph is symmetric with respect to the y-axis, and therefore a constant function is an even function.[4]

In the context where it is defined, the derivative of a function is a measure of the rate of change of function values with respect to change in input values. Because a constant function does not change, its derivative is 0.[5] This is often written: . The converse is also true. Namely, if y′(x) = 0 for all real numbers x, then y is a constant function.[6] For example, given the constant function . The derivative of y is the identically zero function .

Other properties

For functions between preordered sets, constant functions are both order-preserving and order-reversing; conversely, if f is both order-preserving and order-reversing, and if the domain of f is a lattice, then f must be constant.

  • Every constant function whose domain and codomain are the same set X is a left zero of the full transformation monoid on X, which implies that it is also idempotent.
  • It has zero slope or gradient.
  • Every constant function between topological spaces is continuous.
  • A constant function factors through the one-point set, the terminal object in the category of sets. This observation is instrumental for F. William Lawvere's axiomatization of set theory, the Elementary Theory of the Category of Sets (ETCS).[7]
  • For any non-empty X, every set Y is isomorphic to the set of constant functions in . For any X and each element y in Y, there is a unique function such that for all . Conversely, if a function satisfies for all , is by definition a constant function.
    • As a corollary, the one-point set is a generator in the category of sets.
    • Every set is canonically isomorphic to the function set , or hom set in the category of sets, where 1 is the one-point set. Because of this, and the adjunction between Cartesian products and hom in the category of sets (so there is a canonical isomorphism between functions of two variables and functions of one variable valued in functions of another (single) variable, ) the category of sets is a closed monoidal category with the Cartesian product of sets as tensor product and the one-point set as tensor unit. In the isomorphisms natural in X, the left and right unitors are the projections and the ordered pairs and respectively to the element , where is the unique point in the one-point set.

A function on a connected set is locally constant if and only if it is constant.

References

  1. ^ Tanton, James (2005). Encyclopedia of Mathematics. Facts on File, New York. p. 94. ISBN 0-8160-5124-0.
  2. ^ Dawkins, Paul (2007). "College Algebra". Lamar University. p. 224. Retrieved January 12, 2014.
  3. ^ Carter, John A.; Cuevas, Gilbert J.; Holliday, Berchie; Marks, Daniel; McClure, Melissa S. (2005). "1". Advanced Mathematical Concepts - Pre-calculus with Applications, Student Edition (1 ed.). Glencoe/McGraw-Hill School Pub Co. p. 22. ISBN 978-0078682278.
  4. ^ Young, Cynthia Y. (2021). Precalculus (3rd ed.). John Wiley & Sons. p. 122. ISBN 978-1-119-58294-6.
  5. ^ Varberg, Dale E.; Purcell, Edwin J.; Rigdon, Steven E. (2007). Calculus (9th ed.). Pearson Prentice Hall. p. 107. ISBN 978-0131469686.
  6. ^ "Zero Derivative implies Constant Function". Retrieved January 12, 2014.
  7. ^ Leinster, Tom (27 Jun 2011). "An informal introduction to topos theory". arXiv:1012.5647 [math.CT].
  • Herrlich, Horst and Strecker, George E., Category Theory, Heldermann Verlag (2007).

Read other articles:

This article is about the physicist. For the politician, see Balázs Győrffy (politician). Balázs László GyőrffyCommemorative Blue Plaque outside the house where Balazs L Gyorffy lived in BristolBorn(1938-05-04)4 May 1938Eger, HungaryDied25 October 2012(2012-10-25) (aged 74)NationalityAmericanAlma materYale UniversityKnown forGaspari-Gyorffy methodScientific careerFieldsTheoretical solid-state physicsInstitutionsUniversity of BristolDoctoral advisorWillis LambDoctoral stud...

 

 

Çorum provinceProvince of TurkeyLocation of Çorum Province in TurkeyCountryTurkeyRegionBlack SeaLuas • Total12,820 km2 (4,950 sq mi)Populasi (2010-12-31)[1] • Total535.405 • Kepadatan42,000/km2 (110,000/sq mi)Kode area telepon0364Pelat kendaraan19Situs webçorum.gov.tr Çorum (Turki: Çorum İli) adalah sebuah provinsi Turki. lbsDaftar provinsi Turki Adana · Adıyaman · Afyonkarahisar · ...

 

 

American animation studio owned by Warner Bros. This article is about the studio founded in 1980. For its predecessor, see Warner Bros. Cartoons. For the feature theatrical film animation division of Warner Bros. since 2013, see Warner Bros. Pictures Animation. Warner Bros. Animation Inc.Logo used since 2010FormerlyWarner Bros. Television Animation (1995–2003)Company typeDivisionIndustryFilmTelevisionAnimationPredecessorsWarner Bros. Cartoons (1933–1969)Hanna-Barbera (1957–2001)FoundedM...

Перуанский анчоус Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеГруппа:Костные рыбыКласс:Лучепёрые рыбыПодкласс:Новопёрые �...

 

 

Questa voce o sezione sull'argomento politici britannici non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Segui i suggerimenti del progetto di riferimento. Herbert John GladstoneGladstone nel 1903 1º Governatore generale dell'Unione SudafricanaDurata mandato31 maggio 1910 –8 settembre 1914 MonarcaGiorgio V Capo del governoLouis Botha Pred...

 

 

This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Aegean cat – news · newspapers · books · scholar · JSTOR (May 2013) (Learn how and when to remove this mess...

American animated television series HerculesAlso known asDisney's Hercules: The Animated SeriesGenre Comedy Fantasy Musical Based onHerculesby Walt Disney Animation StudiosDeveloped byTad StonesDirected byPhil WeinsteinVoices of Tate Donovan Robert Costanzo French Stewart Sandra Bernhard James Woods Bobcat Goldthwait Matt Frewer Corey Burton Frank Welker Paul Shaffer Diedrich Bader Jodi Benson Robert Stack Linda Hamilton Lisa Kudrow Theme music composerAlan MenkenComposers Adam Berry J. Eric ...

 

 

American racing driver (born 1962) Al Unser Jr.Unser Jr. in 2011BornAlfred Unser Jr. (1962-04-19) April 19, 1962 (age 62)Albuquerque, New Mexico, U.S.Championship titlesSCCA/CASC Can-Am (1982) CART Championship Car (1990, 1994) Major victories Pikes Peak Hill Climb (1983) 24 Hours of Daytona (1986, 1987) Long Beach Grand Prix (1988, 1989, 1990, 1991, 1994, 1995) Michigan 500 (1990) Indianapolis 500 (1992, 1994)Champ Car career273 races run over 19 yearsBest finish1st (1990, 1994)First ra...

 

 

本條目存在以下問題,請協助改善本條目或在討論頁針對議題發表看法。 此條目需要擴充。 (2013年1月1日)请協助改善这篇條目,更進一步的信息可能會在討論頁或扩充请求中找到。请在擴充條目後將此模板移除。 此條目需要补充更多来源。 (2013年1月1日)请协助補充多方面可靠来源以改善这篇条目,无法查证的内容可能會因為异议提出而被移除。致使用者:请搜索一下条目的...

莎拉·阿什頓-西里洛2023年8月,阿什頓-西里洛穿著軍服出生 (1977-07-09) 1977年7月9日(46歲) 美國佛羅里達州国籍 美國别名莎拉·阿什頓(Sarah Ashton)莎拉·西里洛(Sarah Cirillo)金髮女郎(Blonde)职业記者、活動家、政治活動家和候選人、軍醫活跃时期2020年—雇主內華達州共和黨候選人(2020年)《Political.tips》(2020年—)《LGBTQ國度》(2022年3月—2022年10月)烏克蘭媒�...

 

 

Military operation of the Syrian Army For the previous offensives, see Eastern Homs offensive (2017), Syrian Desert campaign (May–July 2017), Maskanah Plains offensive, and Southern Raqqa offensive (June 2017). This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) The neutrality of this article is disputed. Relevant discussion may be found on the talk page. Please do not remove this message u...

 

 

Bois-Jérôme-Saint-Ouencomune Bois-Jérôme-Saint-Ouen – Veduta LocalizzazioneStato Francia Regione Normandia Dipartimento Eure ArrondissementLes Andelys CantoneLes Andelys TerritorioCoordinate49°07′N 1°32′E49°07′N, 1°32′E (Bois-Jérôme-Saint-Ouen) Superficie10,57 km² Abitanti777[1] (2009) Densità73,51 ab./km² Altre informazioniCod. postale27620 Fuso orarioUTC+1 Codice INSEE27072 CartografiaBois-Jérôme-Saint-Ouen Sito istituzionaleModifica dati...

American politician (1936–2019) Jo Ann Zimmerman42nd Lieutenant Governor of IowaIn officeJanuary 16, 1987 – January 18, 1991GovernorTerry BranstadPreceded byRobert T. AndersonSucceeded byJoy CorningMember of the Iowa House of Representativesfrom the 89th districtIn officeJanuary 10, 1983 – January 11, 1987Preceded byCharles PoncySucceeded byWayne McKinney Personal detailsBornJo Ann McIntosh(1936-12-24)December 24, 1936Van Buren County, Iowa, U.S.DiedOctober...

 

 

Point on a surface with a higher elevation than all immediately adjacent points This article is about a topographic term. For meetings between heads of state, see Summit (meeting). For other uses, see Summit (disambiguation). A climber taking the final few steps to the 6,160 m (20,210 ft)[1] summit of Imja Tse (Island Peak) in Nepal, 2004 View from the summit of Switzerland's highest peak, Monte Rosa A summit is a point on a surface that is higher in elevation than all point...

 

 

معدل وفيات الفترة المحيطة بالولادة يشير معدل وفيات الفترة المحيطة بالولادة (PNM)، يسمى أيضاً الوفاة في الفترة المحيطة بالولادة، إلى وفاة الجنين الحي أو الوليد وهو يعد الأساس لحساب معدل وفيات الفترة المحيطة بالولادة. وتوجد الاختلافات في التعريف الدقيق لمعدل الوفيات في الفت�...

第三十二届夏季奥林匹克运动会女子100公尺比賽奧林匹克田徑比賽場館國立競技場日期2021年7月30日(預賽和第一回合)2021年7月31日(準決賽和決賽)[1]参赛选手71位選手,來自55個國家和地區冠军成绩10.61秒 OR奖牌获得者01 ! 伊莱恩·汤普森-赫拉  牙买加02 ! 谢莉-安·弗雷泽  牙买加03 ! 谢瑞卡·杰克逊  牙买加← 20162024 → 2020年夏季奥林�...

 

 

Ne doit pas être confondu avec Langlois de Sézanne. Pour les articles ayant des titres homophones, voir Sézanne et Sézane. Paul CézannePhotographie de Paul Cezanne, en 1899Naissance 19 janvier 1839Aix-en-Provence (France)Décès 22 octobre 1906 (à 67 ans)Aix-en-Provence (France)Sépulture Cimetière Saint-Pierre d'Aix-en-ProvenceNationalité FrançaiseActivité PeintreFormation Académie de Charles SuisseMaître Joseph Gilbert, Antoine Guillemet, Camille PissarroÉlève Émile Ber...

 

 

Hierarchical interface This article relies excessively on references to primary sources. Please improve this article by adding secondary or tertiary sources. Find sources: Synthetic file system – news · newspapers · books · scholar · JSTOR (August 2015) (Learn how and when to remove this message) In computer science, a synthetic file system or a pseudo file system is a hierarchical interface to non-file objects that appear as if they were regular files...

大伯父で政治家の「安倍慎太郎」とは別人です。 日本の政治家安倍 晋太郎あべ しんたろう 1982年生年月日 1924年4月29日出生地 日本 東京府東京市四谷区没年月日 (1991-05-15) 1991年5月15日(67歳没)死没地 日本 東京都文京区出身校 東京大学法学部卒業前職 毎日新聞記者内閣総理大臣秘書官所属政党 自由民主党(安倍(晋太郎)派)称号 従二位 勲一等旭日桐花大綬章衆議院�...

 

 

Insurgent group in Myanmar Not to be confused with the Karen National Liberation Army. Karen National Armyကရင်အမျိုးသားတပ်မတော် Flag of the Myanmar Border Guard Forces and the Democratic Karen Buddhist Army, both used by the Karen National ArmyLeadersColonel Saw Chit ThuDates of operation11 January 2024–presentHeadquartersShwe Kokko[1]Active regionsKayin StateSize7,000+[2]AlliesState allies State Administration Council[3]...