Set-valued functions are also known as multivalued functions in some references,[3] but this article and the article Multivalued function follow the authors who make a distinction.
Distinction from multivalued functions
Although other authors may distinguish them differently (or not at all), Wriggers and Panatiotopoulos (2014) distinguish multivalued functions from set-valued functions (which they called set-valued relations) by the fact that multivalued functions only take multiple values at finitely (or denumerably) many points, and otherwise behave like a function.[2] Geometrically, this means that the graph of a multivalued function is necessarily a line of zero area that doesn't loop, while the graph of a set-valued relation may contain solid filled areas or loops.[2]
Alternatively, a multivalued function is a set-valued function f that has a further continuity property, namely that the choice of an element in the set defines a corresponding element in each set for y close to x, and thus defines locally an ordinary function.
Example
The argmax of a function is in general, multivalued. For example, .
Instead of considering collections of only points, set-valued analysis considers collections of sets. If a collection of sets is endowed with a topology, or inherits an appropriate topology from an underlying topological space, then the convergence of sets can be studied.
Set-valued functions arise in optimal control theory, especially differential inclusions and related subjects as game theory, where the Kakutani fixed-point theorem for set-valued functions has been applied to prove existence of Nash equilibria. This among many other properties loosely associated with approximability of upper hemicontinuous multifunctions via continuous functions explains why upper hemicontinuity is more preferred than lower hemicontinuity.