Minimal polynomial of 2cos(2pi/n)

In number theory, the real parts of the roots of unity are related to one-another by means of the minimal polynomial of The roots of the minimal polynomial are twice the real part of the roots of unity, where the real part of a root of unity is just with coprime with

Formal definition

For an integer , the minimal polynomial of is the non-zero monic polynomial of smallest degree for which .

For every n, the polynomial is monic, has integer coefficients, and is irreducible over the integers and the rational numbers. All its roots are real; they are the real numbers with coprime with and either or These roots are twice the real parts of the primitive nth roots of unity. The number of integers relatively prime to is given by Euler's totient function it follows that the degree of is for and for

The first two polynomials are and

The polynomials are typical examples of irreducible polynomials whose roots are all real and which have a cyclic Galois group.

Examples

The first few polynomials are

Explicit form if n is odd

If is an odd prime, the polynomial can be written in terms of binomial coefficients following a "zigzag path" through Pascal's triangle:

Putting and

then we have for primes .

If is odd but not a prime, the same polynomial , as can be expected, is reducible and, corresponding to the structure of the cyclotomic polynomials reflected by the formula , turns out to be just the product of all for the divisors of , including itself:

This means that the are exactly the irreducible factors of , which allows to easily obtain for any odd , knowing its degree . For example,

Explicit form if n is even

From the below formula in terms of Chebyshev polynomials and the product formula for odd above, we can derive for even

Independently of this, if is an even prime power, we have for the recursion (see OEISA158982)

,

starting with .

Roots

The roots of are given by ,[1] where and . Since is monic, we have

Combining this result with the fact that the function is even, we find that is an algebraic integer for any positive integer and any integer .

Relation to the cyclotomic polynomials

For a positive integer , let , a primitive -th root of unity. Then the minimal polynomial of is given by the -th cyclotomic polynomial . Since , the relation between and is given by . This relation can be exhibited in the following identity proved by Lehmer, which holds for any non-zero complex number :[2]

Relation to Chebyshev polynomials

In 1993, Watkins and Zeitlin established the following relation between and Chebyshev polynomials of the first kind.[1]

If is odd, then[verification needed]

and if is even, then

If is a power of , we have moreover directly[3]

Absolute value of the constant coefficient

The absolute value of the constant coefficient of can be determined as follows:[4]

Generated algebraic number field

The algebraic number field is the maximal real subfield of a cyclotomic field . If denotes the ring of integers of , then . In other words, the set is an integral basis of . In view of this, the discriminant of the algebraic number field is equal to the discriminant of the polynomial , that is[5]

References

  1. ^ a b W. Watkins and J. Zeitlin (1993). "The minimal polynomial of ". The American Mathematical Monthly. 100 (5): 471–474. doi:10.2307/2324301. JSTOR 2324301.
  2. ^ D. H. Lehmer (1933). "A note on trigonometric algebraic numbers". The American Mathematical Monthly. 40 (3): 165–166. doi:10.2307/2301023. JSTOR 2301023.
  3. ^ see OEIS A064984
  4. ^ C. Adiga, I. N. Cangul and H. N. Ramaswamy (2016). "On the constant term of the minimal polynomial of over ". Filomat. 30 (4): 1097–1102. doi:10.2298/FIL1604097A.
  5. ^ J. J. Liang (1976). "On the integral basis of the maximal real subfield of a cyclotomic field". Journal für die reine und angewandte Mathematik. 286–287: 223–226.

Read other articles:

Klorobi Chlorobi Bakteri belerang hijau dalam kolom WinogradskyTaksonomiSuperdomainBiotaDomainBacteriaSubkerajaanNegibacteriaFilumChlorobi Kelas, ordo, famili, genus Kelas Chlorobia Cavalier-Smith 2002 Ordo Chlorobiales Gibbons dan Murray 1978 Famili Chlorobiaceae Copeland 1956 Ancalochloris Gorlenko and Lebedeva 1971 Chlorobaculum Imhoff 2003 Chlorobium Nadson 1906 emend. Imhoff 2003 Chloroherpeton Gibson et al. 1985 Clathrochloris Witt et al. 1989 Pelodictyon Lauterborn 1913 Prosthecochlori...

 

Idols Netherlands Idols Netherlands Finalis(beserta tanggal tereliminasi) Musim Pertama (2003) Jamai LomanJuara Jim Bakkum9 Maret Hind Laroussi2 Maret Dewi Pechler23 Februari David Gonçalves16 Februari Marieke Van Ginneken9 Februari Bas Nibbelke2 Februari Joël De Tombe26 Januari Yuli Minguel19 Januari Zosja El Rhazi12 Januari Musim Kedua (2004) Boris TitulaerJuara Maud Mulder1 Mei JK24 April Marlies Schuitenmaker17 April Irma Van Pamelen10 April Eric Bouwman3 April Alice Hoes27 Maret Ron L...

 

كارل لودفيغ فيلدينوف (بالألمانية: Carl (Karl) Ludwig von bear)‏  معلومات شخصية الميلاد 22 أغسطس 1765(1765-08-22)برلين الوفاة 10 يوليو 1812 (46 سنة)برلين الإقامة مملكة بروسيا  مواطنة مملكة بروسيا عضو في الأكاديمية الملكية السويدية للعلوم،  والأكاديمية البروسية للعلوم،  والأكاديمية البا...

Mario Scaramella Mario Scaramella (lahir 23 April 1970)[1] adalah seorang pengacara, akademikus dan konsultan keamanan Italia yang menjadi terkenal di dunia internasional pada 2006 dalam kaitannya dengan peracunan bekas agen FSB Alexander Litvinenko. Scaramella bertugas sebagai penyelidik dan penasihat untuk Komisi Mitrokhin yang kontroversial yang dibentuk oleh partai Forza Italia yang dipimpin Silvio Berlusconi untuk menyelidiki dugaan kaitan antara lawan-lawan politik Berlusconi, t...

 

Academic discipline studying the relationship between computer systems and their users This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Human–computer interaction – news · ...

 

Japanese media franchise The Kabocha WineCover of the first manga volumeTheかぼちゃワイン(The Kabocha Wain) MangaWritten byMitsuru MiuraPublished byKodanshaMagazineWeekly Shōnen MagazineDemographicShōnenOriginal run1981 – 1984Volumes18 MangaThe Kabocha Wine — SequelWritten byMitsuru MiuraPublished bySeirindoPublishedOctober 15, 2006Volumes1 MangaThe Kabocha Wine — AnotherWritten byMitsuru MiuraPublished byAkita ShotenMagazinePlay ComicDemographicSe...

† Человек прямоходящий Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:Синапсиды�...

 

Chemical compound N-Ethyl-3-piperidyl benzilateLegal statusLegal status DE: Anlage I (Authorized scientific use only) US: Schedule I Identifiers IUPAC name (1-ethylpiperidin-3-yl) 2-hydroxy-2,2-di(phenyl)acetate CAS Number3567-12-2 YPubChem CID62504ChemSpider56281 YUNII02J52696MZChEMBLChEMBL342669 YChemical and physical dataFormulaC21H25NO3Molar mass339.435 g·mol−13D model (JSmol)Interactive image SMILES O=C(OC1CCCN(CC)C1)C(O)(c2ccccc2)c3ccccc3 InChI InChI=1S/...

 

بطولة أمم أوروبا لكرة القدم 1988تفاصيل المسابقةالبلد المضيف ألمانيا الغربيةالتواريخ10 يونيو – 25 يونيوالفرق8الأماكن8 (في 8 مدن مضيفة)المراكز النهائيةالبطل هولنداالوصيف الاتحاد السوفيتيإحصائيات المسابقةالمباريات الملعوبة15الأهداف المسجلة34 (2٫27 لكل مباراة)ا�...

Questa voce sull'argomento cestisti giamaicani è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Garfield Blair Nazionalità  Stati Uniti Giamaica Altezza 196 cm Peso 93 kg Pallacanestro Ruolo Guardia Termine carriera 2016 CarrieraGiovanili 2005-2009 Stetson HattersSquadre di club 2012Kilsyth Cobras2013Heartland Eagles2013-2014 Cáceres18 (176)2014-2015 Peixefresco34 (467)2015-20...

 

This article is about the year 1215. For aviation frequency 121.5, see Aircraft emergency frequency. Calendar year Millennium: 2nd millennium Centuries: 12th century 13th century 14th century Decades: 1190s 1200s 1210s 1220s 1230s Years: 1212 1213 1214 1215 1216 1217 1218 1215 by topic Leaders Political entities State leaders Religious leaders Birth and death categories Births – Deaths Establishments and disestablishments categories Establishments – Disestablishments ...

 

سليم كندي تقسيم إداري البلد إيران  [1] إحداثيات 37°40′26″N 45°06′42″E / 37.67388889°N 45.11166667°E / 37.67388889; 45.11166667   السكان التعداد السكاني 26 نسمة (إحصاء 2016) الرمز الجغرافي 18525  تعديل مصدري - تعديل   سليم‌ كندي هي قرية في مقاطعة أرومية، إيران.[2] يقدر عدد سكانها ب...

Judging another culture solely by the values and standards of one's own culture Polish sociologist Ludwig Gumplowicz is believed to have coined the term ethnocentrism in the 19th century, although he may have merely popularized it. Ethnocentrism in social science and anthropology—as well as in colloquial English discourse—means to apply one's own culture or ethnicity as a frame of reference to judge other cultures, practices, behaviors, beliefs, and people, instead of using the standards ...

 

Disambiguazione – Show rimanda qui. Se stai cercando altri significati, vedi Show (disambigua). Questa voce sull'argomento spettacolo è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Il Festival mundial de Tango a Buenos Aires Lo spettacolo è un evento naturale o antropico, spontaneo o provocato o anche un'imitazione di questo, che cattura l'attenzione di una o più persone che fungono da spettatori ovvero soggetti testimoni in genere aventi...

 

ASUS Eee PC adalah model komputer jinjing berukuran kecil yang dirancang dan diproduksi oleh perusahaan ASUS. Perbedaan utama ASUS Eee PC dengan kebanyakan komputer jinjing lain terletak pada ukuran fisik yang lebih kecil, bobot yang lebih ringan, serta spesifikasi teknis yang dimilikinya. Pada awal peluncuran produknya, Eee PC menggunakan sistem operasi Linux dan perangkat penyimpan data berupa memori solid-state drive (SSD). Pada model-model Eee PC berikutnya, sistem operasi Windows XP dise...

American musician (born 1945) Bobby OgdinBobby Ogdin at Nashville's Ryman Auditorium October, 2018Background informationBirth nameRobert Ford OgdinBorn (1945-09-28) September 28, 1945 (age 78)Detroit, Michigan, USAGenrescountry, rock, alternative rockOccupation(s)keyboardist, non-vocal instrumentalistInstrument(s)KeyboardsYears active1975–presentWebsitebobbyogdin.comMusical artistRobert Ford Ogdin (born September, 1945) is a Nashville-based recording session pianist. He is best known a...

 

Graph that misrepresents data Example of a truncated (left) vs full-scale graph (right), using the same data Part of a series on StatisticsData and information visualization Major dimensions Exploratory data analysis Information design Interactive data visualization Descriptive statistics Inferential statistics Statistical graphics Plot Data analysis Infographic Data science Important figures Tamara Munzner Ben Shneiderman John Tukey Edward Tufte Simon Wardley Hans Rosling David McCandless Ki...

 

1975 South African Grand Prix Race detailsDate 1 March 1975Official name XXI Lucky Strike Grand Prix of South AfricaLocation KyalamiTransvaal Province, South AfricaCourse Permanent racing facilityCourse length 4.104 km (2.550 miles)Distance 78 laps, 320.112 km (198.908 miles)Weather SunnyPole positionDriver Carlos Pace Brabham-FordTime 1:16.41[1]Fastest lapDriver Carlos Pace Brabham-FordTime 1:17.20[2] on lap 11PodiumFirst Jody Scheckter Tyrrell-FordSecond Carlos Reutemann Br...

Zach Sherwin Sherwin pada tahun 2009Lahir1 Juli 1980 (umur 44)East Cleveland, Ohio, Amerika SerikatAlmamaterUniversitas BrandeisPekerjaanPelawakMusisiPenulisAktorKota asalSpringfield, Missouri, Amerika Serikat[1]Situs webzachsherwin.com Zach Sherwin (lahir 1 Juli 1980) adalah seorang pelawak, musisi, penulis, dan pemeran asal Amerika Serikat yang dikenal karena menulis dan tampil dalam seri YouTube Epic Rap Battles of History, serta menulis untuk Crazy Ex-Girlfriend di The ...

 

United States Army post in Alabama Buckner Hall at Fort McClellan in 2014. Fort McClellan, originally Camp McClellan, is a decommissioned United States Army post located adjacent to the city of Anniston, Alabama. During World War II, it was one of the largest U.S. Army installations, training an estimated half-million troops. After the war it became the home of the Military Police Corps, the Chemical Corps and the Women's Army Corps. From 1975 until it was closed in 1999, Fort McClellan was h...