Square root of 6

Square root of 6
RationalityIrrational
Representations
Decimal2.449489742783178098...
Algebraic form
Continued fraction
Rectangles of area 6, including 2x3 and 3x2 (solid black), and a square of side geometric mean of 2 and 3, or square root of 6 (red dashed); plus a square of side arithmetic mean of 2 and 3 (black dotted) with area 6.25
Distances between vertices of a double unit cube are square roots of the first six natural numbers, including the square root of 6 (√7 is not possible due to Legendre's three-square theorem)

The square root of 6 is the positive real number that, when multiplied by itself, gives the natural number 6. It is more precisely called the principal square root of 6, to distinguish it from the negative number with the same property. This number appears in numerous geometric and number-theoretic contexts. It can be denoted in surd form as[1] and in exponent form as .

It is an irrational algebraic number.[2] The first sixty significant digits of its decimal expansion are:

2.44948974278317809819728407470589139196594748065667012843269....[3]

which can be rounded up to 2.45 to within about 99.98% accuracy (about 1 part in 4800); that is, it differs from the correct value by about 1/2,000. It takes two more digits (2.4495) to reduce the error by about half. The approximation 218/89 (≈ 2.449438...) is nearly ten times better: despite having a denominator of only 89, it differs from the correct value by less than 1/20,000, or less than one part in 47,000.

Since 6 is the product of 2 and 3, the square root of 6 is the geometric mean of 2 and 3, and is the product of the square root of 2 and the square root of 3, both of which are irrational algebraic numbers.

NASA has published more than a million decimal digits of the square root of six.[4]

Rational approximations

The square root of 6 can be expressed as the simple continued fraction

(sequence A040003 in the OEIS)

The successive partial evaluations of the continued fraction, which are called its convergents, approach :

Their numerators are 2, 5, 22, 49, 218, 485, 2158, 4801, 21362, 47525, 211462, …(sequence A041006 in the OEIS), and their denominators are 1, 2, 9, 20, 89, 198, 881, 1960, 8721, 19402, 86329, …(sequence A041007 in the OEIS).[5]

Each convergent is a best rational approximation of ; in other words, it is closer to than any rational with a smaller denominator. Decimal equivalents improve linearly, at a rate of nearly one digit per convergent:

The convergents, expressed as x/y, satisfy alternately the Pell's equations[5]

When is approximated with the Babylonian method, starting with x0 = 2 and using xn+1 = 1/2(xn + 6/xn), the nth approximant xn is equal to the 2nth convergent of the continued fraction:

A Logarex system Darmstadt slide rule with 7 and 6 on A and B scales, and square roots of 6 and of 7 on C and D scales, which can be read as slightly less than 2.45 and somewhat more than 2.64, respectively

The Babylonian method is equivalent to Newton's method for root finding applied to the polynomial . The Newton's method update, is equal to when . The method therefore converges quadratically.

Geometry

A regular octahedron with an inscribed sphere, illustrating the square root of 6 ratio between edge length and radius
Root rectangles illustrate a construction of the square root of 6
An equilateral triangle with circumscribed rectangle and square; the side of the square is , and the diagonal of the rectangle is the square root of 7.

In plane geometry, the square root of 6 can be constructed via a sequence of dynamic rectangles, as illustrated here.[6][7][8]

In solid geometry, the square root of 6 appears as the longest distances between corners (vertices) of the double cube, as illustrated above. The square roots of all lower natural numbers appear as the distances between other vertex pairs in the double cube (including the vertices of the included two cubes).[8]

The edge length of a cube with total surface area of 1 is or the reciprocal square root of 6. The edge lengths of a regular tetrahedron (t), a regular octahedron (o), and a cube (c) of equal total surface areas satisfy .[3][9]

The edge length of a regular octahedron is the square root of 6 times the radius of an inscribed sphere (that is, the distance from the center of the solid to the center of each face).[10]

The square root of 6 appears in various other geometry contexts, such as the side length for the square enclosing an equilateral triangle of side 2 (see figure).

Trigonometry

The square root of 6, with the square root of 2 added or subtracted, appears in several exact trigonometric values for angles at multiples of 15 degrees ( radians).[11]

Radians Degrees sin cos tan cot sec csc

In culture

13th-century fifth-point arch shape, according to Branner's 1960 interpretation (Paris, Bibliothèque nationale de France, MS Fr 19093) of the 13th-century Picard artist Villard de Honnecourt

Villard de Honnecourt's 13th century construction of a Gothic "fifth-point arch" with circular arcs of radius 5 has a height of twice the square root of 6, as illustrated here.[12][13]

See also

References

  1. ^ Ray, Joseph (1842). Ray's Eclectic Arithmetic on the Inductive and Analytic Methods of Instruction. Cincinnati: Truman and Smith. p. 217. Retrieved 20 March 2022.
  2. ^ O'Sullivan, Daniel (1872). The Principles of Arithmetic: A Comprehensive Text-Book. Dublin: Alexander Thom. p. 234. Retrieved 17 March 2022.
  3. ^ a b Sloane, N. J. A. (ed.). "Sequence A010464 (Decimal expansion of square root of 6)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  4. ^ Robert Nemiroff; Jerry Bonnell. "the first 1 million digits of the square root of 6". nasa.gov. Retrieved 17 March 2022.
  5. ^ a b Conrad, Keith. "Pell's Equation II" (PDF). uconn.edu. Retrieved 17 March 2022. The continued fraction of √6 is [2; 2, 4], and the table of convergents below suggests (and it is true) that every other convergent provides a solution to x2 − 6y2 = 1.
  6. ^ Jay Hambidge (1920) [1920]. Dynamic Symmetry: The Greek Vase (Reprint of original Yale University Press ed.). Whitefish, MT: Kessinger Publishing. pp. 19–29. ISBN 0-7661-7679-7. Dynamic Symmetry root rectangles.
  7. ^ Matila Ghyka (1977). The Geometry of Art and Life. Courier Dover Publications. pp. 126–127. ISBN 9780486235424.
  8. ^ a b Fletcher, Rachel (2013). Infinite Measure: Learning to Design in Geometric Harmony with Art, Architecture, and Nature. George F Thompson Publishing. ISBN 978-1-938086-02-1.
  9. ^ Rechtman, Ana. "Un défi par semaine Avril 2016, 3e défi (Solution du 2e défi d'Avril)". Images des Mathématiques. Retrieved 23 March 2022.
  10. ^ S. C. & L. M. Gould (1890). The Bizarre Notes and Queries in History, Folk-lore, Mathematics, Mysticism, Art, Science, Etc, Volumes 7-8. Manchester, N. H. p. 342. Retrieved 19 March 2022. In the octahedron whose diameter is 2, the linear edge equals the square root of 6.{{cite book}}: CS1 maint: location missing publisher (link)
  11. ^ Abramowitz, Milton; Stegun, Irene A., eds. (1972). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. New York: Dover Publications. p. 74. ISBN 978-0-486-61272-0.
  12. ^ Branner, Robert (1960). "Villard de Honnecourt, Archimedes, and Chartres". Journal of the Society of Architectural Historians. 19 (3): 91–96. doi:10.2307/988023. JSTOR 988023. Retrieved 25 March 2022.
  13. ^ Shelby, Lon R. (1969). "Setting Out the Keystones of Pointed Arches: A Note on Medieval 'Baugeometrie'". Technology and Culture. 10 (4): 537–548. doi:10.2307/3101574. JSTOR 3101574. Retrieved 25 March 2022.

Read other articles:

Artikel ini memberikan informasi dasar tentang topik kesehatan. Informasi dalam artikel ini hanya boleh digunakan untuk penjelasan ilmiah; bukan untuk diagnosis diri dan tidak dapat menggantikan diagnosis medis. Wikipedia tidak memberikan konsultasi medis. Jika Anda perlu bantuan atau hendak berobat, berkonsultasilah dengan tenaga kesehatan profesional. Artikel ini membutuhkan rujukan tambahan agar kualitasnya dapat dipastikan. Mohon bantu kami mengembangkan artikel ini dengan cara menambahka...

 

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada November 2022. Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Oktober 2022. Ilya S...

 

 

Indian Television show This article is about Indian series. For international franchise broadcast in a number of countries, see Rising Star (TV series). Season of television series Rising StarSeason 1Country of originIndiaNo. of episodes24ReleaseOriginal networkColors TVOriginal release4 February (2017-02-04) –23 April 2017 (2017-04-23)Season chronologyNext →Season 2 Rising Star is an Indian version of the international franchise series Rising Star, a reality televisio...

Bonn Pemandangan Kota Bonn BenderaLambang kebesaranBonn di North Rhine-Westphalia Bonn Tampilkan peta JermanBonn Tampilkan peta Nordrhein-WestfalenKoordinat: 50°44′N 7°6′E / 50.733°N 7.100°E / 50.733; 7.100Koordinat: 50°44′N 7°6′E / 50.733°N 7.100°E / 50.733; 7.100NegaraJermanNegara bagianNordrhein-WestfalenWilayahKöln KreisDistrik perkotaanDidirikanabad pertama SMPemerintahan • Lord MayorAshok-Alexander Sridharan (C...

 

 

Administrasi militer-sipil LuhanskЛуганск военно-гражданская администрацияcode: ru is deprecated  (Rusia)2022 Bendera Lambang Peta Administrasi Sipil Militer Luhansk, termasuk hampir seluruh Oblast LuhanskStatusDiduduki oleh RusiaIbu kotaLuhanskPemerintahan• Komandan Militer Leonid Pasechnik• Perdana Menteri Sergey Kozlov Sejarah • Pertempuran Luhansk 27 April 2014 Luas - Total8,377 km2Populasi - Perkiraan...

 

 

العلاقات الكورية الجنوبية الموزمبيقية كوريا الجنوبية موزمبيق   كوريا الجنوبية   موزمبيق تعديل مصدري - تعديل   العلاقات الكورية الجنوبية الموزمبيقية هي العلاقات الثنائية التي تجمع بين كوريا الجنوبية وموزمبيق.[1][2][3][4][5] مقارنة بين البلدين ...

Saint-Nizier-du-Moucherotte 1. L'église Saint-Nizier et son cimetière2. L'Hôtel de ville de Saint-Nizier3. Le site de l'église, le cimetière et les Trois Pucelles4. La nécropole de Saint-Nizier et le Moucherotte Administration Pays France Région Auvergne-Rhône-Alpes Département Isère Arrondissement Grenoble Intercommunalité Communauté de communes du massif du Vercors Maire Mandat Franck Girard-Carrabin (SE) 2020-2026 Code postal 38250 Code commune 38433 Démographie Gentilé Sain...

 

 

Arifureta: From Commonplace to World's StrongestGambar sampul novel ringan volume pertama menampilkan Yueありふれた職業で世界最強(Arifureta Shokugyō de Sekai Saikyō)GenreFantasi, harem, isekai[1] Seri novelPengarangRyo ShirakomePenerbitShōsetsuka ni Narō (Penerbitan sendiri)Terbit7 November 2013 – sekarangVolume10 + 4 cerita sampingan Novel ringanPengarangRyo ShirakomeIlustratorTakayakiPenerbitOverlapPenerbit bahasa InggrisNA J-Novel Club (digital)Seven Seas (cetak)I...

 

 

Bristol Motor Speedway, salah satu sirkuit oval terkenal di Amerika Serikat. Balap lintasan oval atau balap trek oval adalah sebuah bentuk balap mobil dalam sirkuit tertutup yang diperlombakan pada sirkuit atau trek berbentuk oval. Lintasan oval berbeda dengan lintasan jalan karena tata ruangnya menyerupai oval dengan arah belokan hanya dalam satu arah yang hampir secara universal berlawanan arah jarum jam dan berbelok ke kiri. Trek oval adalah sirkuit yang benar-benar khusus untuk olahraga b...

American actress and film director (born 1962) For other people named Rebecca Miller, see Rebecca Miller (disambiguation). Rebecca MillerMiller at the 2023 BerlinaleBornRebecca Augusta Miller (1962-09-15) September 15, 1962 (age 61)Roxbury, Connecticut, U.S.OccupationScreenwriter, director, novelistAlma materYale UniversityYears active1988–presentSpouse Daniel Day-Lewis ​(m. 1996)​Children2ParentsArthur MillerInge MorathRelativesJoan Copeland (aun...

 

 

Sceaux 行政国 フランス地域圏 (Région) イル=ド=フランス地域圏県 (département) オー=ド=セーヌ県郡 (arrondissement) アントニー郡小郡 (canton) 小郡庁所在地INSEEコード 92071郵便番号 92330市長(任期) フィリップ・ローラン(2008年-2014年)自治体間連合 (fr) メトロポール・デュ・グラン・パリ人口動態人口 19,679人(2007年)人口密度 5466人/km2住民の呼称 Scéens地理座標 北緯48度4...

 

 

この項目には、一部のコンピュータや閲覧ソフトで表示できない文字が含まれています(詳細)。 数字の大字(だいじ)は、漢数字の一種。通常用いる単純な字形の漢数字(小字)の代わりに同じ音の別の漢字を用いるものである。 概要 壱万円日本銀行券(「壱」が大字) 弐千円日本銀行券(「弐」が大字) 漢数字には「一」「二」「三」と続く小字と、「壱」「�...

Macedonian footballer Dragan Stojkov Dragan Stojkov playing for Saint Louis FCPersonal informationDate of birth (1988-02-23) 23 February 1988 (age 36)Place of birth Strumica, SR MacedoniaHeight 1.75 m (5 ft 9 in)Position(s) MidfielderTeam informationCurrent team AP BreraNumber 8Senior career*Years Team Apps (Gls)2005-2007 Belasica 35 (3)2007 → Incheon United (loan) 0 (0)2008 Egaleo 22 (2)2008–2010 Ilisiakos 14 (0)2009–2010 → Napredak Kruševac (loan) 19 (0)2010–2...

 

 

此條目可参照英語維基百科相應條目来扩充。 (2021年5月6日)若您熟悉来源语言和主题,请协助参考外语维基百科扩充条目。请勿直接提交机械翻译,也不要翻译不可靠、低品质内容。依版权协议,译文需在编辑摘要注明来源,或于讨论页顶部标记{{Translated page}}标签。 约翰斯顿环礁Kalama Atoll 美國本土外小島嶼 Johnston Atoll 旗幟颂歌:《星條旗》The Star-Spangled Banner約翰斯頓環礁�...

 

 

Jobes Milling CompanyCompany typeflour millIndustrymanufacturingPredecessorRose City Flour MillFoundedSt. Johns, Oregon, United States 1904FounderWilliam Van Zant JobesDefunct1930Fatesold 1918; demolished 1930HeadquartersSt. Johns, Oregon (1904–15)Portland, Oregon (1915–30)Key peopleAllan R. and William Haskell JobesOwnerWilliam Van Zant Jobes (1904–07)Allan R. and William Haskell Jobes (1907–11)Allan R. Jobes (1911–18)Rose City Flour Mill (1918–30)ParentRose City Flour Mill (1918...

This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Meihuaquan – news · newspapers · books · scholar · JSTOR (September 2015) (Learn how and when to remove thi...

 

 

سيفيرينيا زيمليا     الإحداثيات 79°45′N 98°15′E / 79.75°N 98.25°E / 79.75; 98.25   سبب التسمية نيقولا الثاني إمبراطور روسيا  تقسيم إداري  البلد روسيا[1]  التقسيم الأعلى كراسنويارسك كراي  خصائص جغرافية  المساحة 37000 كيلومتر مربع  ارتفاع 965 متر  عدد الس...

 

 

Thomas Croft NeibaurPenerima Medal of HonorLahir(1898-05-17)17 Mei 1898Sharon, IdahoMeninggal23 Desember 1942(1942-12-23) (umur 44)Walla Walla, WashingtonTempat pemakamanSugar City, IdahoPengabdianAmerika SerikatDinas/cabangAngkatan Darat Amerika SerikatLama dinas1917 - 1919PangkatPrivatKesatuanResimen Infanteri ke-167, Divisi Infanteri ke-42Perang/pertempuranPerang Dunia IPenghargaanAmerika Serikat:Medal of HonorPurple HeartWorld War I Victory MedalPrancis:Légion d'honneur - Cheva...

Team sport This article is about the indoor team sport. For the beach team sport, see Beach volleyball. For other uses, see Volleyball (disambiguation). See also: Throwball and Newcomb ball This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Volleyball – news · newspapers · books · scholar · JSTOR (September 201...

 

 

American businessman and politician For the New Zealand mayor, see Will Appleton. William AppletonMember of theU.S. House of Representatives from MassachusettsIn officeMarch 4, 1851 – March 3, 1855Preceded bySamuel Atkins EliotSucceeded byAnson BurlingameConstituency1st district (1851–53)5th district (1853–55)In officeMarch 4, 1861 – September 27, 1861Preceded byAnson BurlingameSucceeded bySamuel HooperConstituency5th district Personal detailsBorn(1786-11-16)November...