An infinite continued fraction is defined by the sequences , for , with .
A continued fraction is a mathematical expression that can be written as a fraction with a denominator that is a sum that contains another simple or continued fraction. Depending on whether this iteration terminates with a simple fraction or not, the continued fraction is finite or infinite.
Different fields of mathematics have different terminology and notation for continued fraction. In number theory the standard unqualified use of the term continued fraction refers to the special case where all numerators are 1, and is treated in the article Simple continued fraction. The present article treats the case where numerators and denominators are sequences of constants or functions.
From the perspective of number theory, these are called generalized continued fraction. From the perspective of complex analysis or numerical analysis, however, they are just standard, and in the present article they will simply be called "continued fraction".
Formulation
A continued fraction is an expression of the form
where the an (n > 0) are the partial numerators, the bn are the partial denominators, and the leading term b0 is called the integer part of the continued fraction.
The successive convergents of the continued fraction are formed by applying the fundamental recurrence formulas:
If the sequence of convergents {xn} approaches a limit, the continued fraction is convergent and has a definite value. If the sequence of convergents never approaches a limit, the continued fraction is divergent. It may diverge by oscillation (for example, the odd and even convergents may approach two different limits), or it may produce an infinite number of zero denominators Bn.
History
The story of continued fractions begins with the Euclidean algorithm,[4] a procedure for finding the greatest common divisor of two natural numbers m and n. That algorithm introduced the idea of dividing to extract a new remainder – and then dividing by the new remainder repeatedly.
Nearly two thousand years passed before Bombelli (1579) devised a technique for approximating the roots of quadratic equations with continued fractions in the mid-sixteenth century. Now the pace of development quickened. Just 24 years later, in 1613, Pietro Cataldi introduced the first formal notation for the generalized continued fraction.[5] Cataldi represented a continued fraction as
with the dots indicating where the next fraction goes, and each & representing a modern plus sign.
Late in the seventeenth century John Wallis introduced the term "continued fraction" into mathematical literature.[6] New techniques for mathematical analysis (Newton's and Leibniz'scalculus) had recently come onto the scene, and a generation of Wallis' contemporaries put the new phrase to use.
Continued fractions can also be applied to problems in number theory, and are especially useful in the study of Diophantine equations. In the late eighteenth century Lagrange used continued fractions to construct the general solution of Pell's equation, thus answering a question that had fascinated mathematicians for more than a thousand years.[9] Lagrange's discovery implies that the canonical continued fraction expansion of the square root of every non-square integer is periodic and that, if the period is of length p > 1, it contains a palindromic string of length p − 1.
In 1813 Gauss derived from complex-valued hypergeometric functions what is now called Gauss's continued fractions.[10] They can be used to express many elementary functions and some more advanced functions (such as the Bessel functions), as continued fractions that are rapidly convergent almost everywhere in the complex plane.
Notation
The long continued fraction expression displayed in the introduction is easy for an unfamiliar reader to interpret. However, it takes up a lot of space and can be difficult to typeset. So mathematicians have devised several alternative notations. One convenient way to express a generalized continued fraction sets each nested fraction on the same line, indicating the nesting by dangling plus signs in the denominators:
Sometimes the plus signs are typeset to vertically align with the denominators but not under the fraction bars:
Pringsheim wrote a generalized continued fraction this way:
Here the "K" stands for Kettenbruch, the German word for "continued fraction". This is probably the most compact and convenient way to express continued fractions; however, it is not widely used by English typesetters.
Some elementary considerations
Here are some elementary results that are of fundamental importance in the further development of the analytic theory of continued fractions.
Partial numerators and denominators
If one of the partial numerators an+1 is zero, the infinite continued fraction
is really just a finite continued fraction with n fractional terms, and therefore a rational function of a1 to an and b0 to bn+1. Such an object is of little interest from the point of view adopted in mathematical analysis, so it is usually assumed that all ai ≠ 0. There is no need to place this restriction on the partial denominators bi.
The determinant formula
When the nth convergent of a continued fraction
is expressed as a simple fraction xn = An/Bn we can use the determinant formula
1
to relate the numerators and denominators of successive convergents xn and xn − 1 to one another.
The proof for this can be easily seen by induction.
Proof
Base case
The case n = 1 results from a very simple computation.
Inductive step
Assume that (1) holds for n − 1. Then we need to see the same relation holding true for n. Substituting the value of An and Bn in (1) we obtain:
which is true because of our induction hypothesis.
Specifically, if neither Bn nor Bn − 1 is zero (n > 0) we can express the difference between the (n − 1)th and nth convergents like this:
The equivalence transformation
If {ci} = {c1, c2, c3, ...} is any infinite sequence of non-zero complex numbers we can prove, by induction, that
where equality is understood as equivalence, which is to say that the successive convergents of the continued fraction on the left are exactly the same as the convergents of the fraction on the right.
The equivalence transformation is perfectly general, but two particular cases deserve special mention. First, if none of the ai are zero, a sequence {ci} can be chosen to make each partial numerator a 1:
where c1 = 1/a1, c2 = a1/a2, c3 = a2/a1a3, and in general cn+1 = 1/an+1cn.
Second, if none of the partial denominators bi are zero we can use a similar procedure to choose another sequence {di} to make each partial denominator a 1:
where d1 = 1/b1 and otherwise dn+1 = 1/bnbn+1.
These two special cases of the equivalence transformation are enormously useful when the general convergence problem is analyzed.
Notions of convergence
As mentioned in the introduction, the continued fraction
converges if the sequence of convergents {xn} tends to a finite limit. This notion of convergence is very natural, but it is sometimes too restrictive. It is therefore useful to introduce the notion of general convergence of a continued fraction. Roughly speaking, this consists in replacing the part of the fraction by wn, instead of by 0, to compute the convergents. The convergents thus obtained are called modified convergents. We say that the continued fraction converges generally if there exists a sequence such that the sequence of modified convergents converges for all sufficiently distinct from . The sequence is then called an exceptional sequence for the continued fraction. See Chapter 2 of Lorentzen & Waadeland (1992) for a rigorous definition.
There also exists a notion of absolute convergence for continued fractions, which is based on the notion of absolute convergence of a series: a continued fraction is said to be absolutely convergent when the series
Finally, a continued fraction of one or more complex variables is uniformly convergent in an open neighborhoodΩ when its convergents converge uniformly on Ω; that is, when for every ε > 0 there exists M such that for all n > M, for all ,
Even and odd convergents
It is sometimes necessary to separate a continued fraction into its even and odd parts. For example, if the continued fraction diverges by oscillation between two distinct limit points p and q, then the sequence {x0, x2, x4, ...} must converge to one of these, and {x1, x3, x5, ...} must converge to the other. In such a situation it may be convenient to express the original continued fraction as two different continued fractions, one of them converging to p, and the other converging to q.
The formulas for the even and odd parts of a continued fraction can be written most compactly if the fraction has already been transformed so that all its partial denominators are unity. Specifically, if
is a continued fraction, then the even part xeven and the odd part xodd are given by
and
respectively. More precisely, if the successive convergents of the continued fraction x are {x1, x2, x3, ...}, then the successive convergents of xeven as written above are {x2, x4, x6, ...}, and the successive convergents of xodd are {x1, x3, x5, ...}.[12]
Conditions for irrationality
If a1, a2,... and b1, b2,... are positive integers with ak ≤ bk for all sufficiently large k, then
The partial numerators and denominators of the fraction's successive convergents are related by the fundamental recurrence formulas:
The continued fraction's successive convergents are then given by
These recurrence relations are due to John Wallis (1616–1703) and Leonhard Euler (1707–1783).[14]
These recurrence relations are simply a different notation for the relations obtained by Pietro Antonio Cataldi (1548-1626).
As an example, consider the regular continued fraction in canonical form that represents the golden ratio φ:
Applying the fundamental recurrence formulas we find that the successive numerators An are {1, 2, 3, 5, 8, 13, ...} and the successive denominators Bn are {1, 1, 2, 3, 5, 8, ...}, the Fibonacci numbers. Since all the partial numerators in this example are equal to one, the determinant formula assures us that the absolute value of the difference between successive convergents approaches zero quite rapidly.
where z is a complex variable, and a, b, c, d are arbitrary complex constants such that cz + d ≠ 0. An additional restriction that ad ≠ bc is customarily imposed, to rule out the cases in which w = f(z) is a constant. The linear fractional transformation, also known as a Möbius transformation, has many fascinating properties. Four of these are of primary importance in developing the analytic theory of continued fractions.
If c ≠ 0 the LFT has one or two fixed points. This can be seen by considering the equation
which is clearly a quadratic equation in z. The roots of this equation are the fixed points of f(z). If the discriminant(d − a)2 + 4bc is zero the LFT fixes a single point; otherwise it has two fixed points.
such that f(g(z)) = g(f(z)) = z for every point z in the extended complex plane, and both f and g preserve angles and shapes at vanishingly small scales. From the form of z = g(w) we see that g is also an LFT.
The composition of two different LFTs for which ad ≠ bc is itself an LFT for which ad ≠ bc. In other words, the set of all LFTs for which ad ≠ bc is closed under composition of functions. The collection of all such LFTs, together with the "group operation" composition of functions, is known as the automorphism group of the extended complex plane.
Consider a sequence of simple linear fractional transformations
Here we use τ to represent each simple LFT, and we adopt the conventional circle notation for composition of functions. We also introduce a new symbol Τn to represent the composition of n + 1 transformations τi; that is,
and so forth. By direct substitution from the first set of expressions into the second we see that
and, in general,
where the last partial denominator in the finite continued fraction K is understood to be bn + z. And, since bn + 0 = bn, the image of the point z = 0 under the iterated LFT Τn is indeed the value of the finite continued fraction with n partial numerators:
A geometric interpretation
Defining a finite continued fraction as the image of a point under the iterated linear fractional transformation Τn(z) leads to an intuitively appealing geometric interpretation of infinite continued fractions.
In the first of these equations the ratio tends toward An/Bn as z tends toward zero. In the second, the ratio tends toward An/Bn as z tends to infinity. This leads us to our first geometric interpretation. If the continued fraction converges, the successive convergents An/Bn are eventually arbitrarily close together. Since the linear fractional transformation Τn(z) is a continuous mapping, there must be a neighborhood of z = 0 that is mapped into an arbitrarily small neighborhood of Τn(0) = An/Bn. Similarly, there must be a neighborhood of the point at infinity which is mapped into an arbitrarily small neighborhood of Τn(∞) = An−1/Bn−1. So if the continued fraction converges the transformation Τn(z) maps both very small z and very large z into an arbitrarily small neighborhood of x, the value of the continued fraction, as n gets larger and larger.
For intermediate values of z, since the successive convergents are getting closer together we must have
where k is a constant, introduced for convenience. But then, by substituting in the expression for Τn(z) we obtain
so that even the intermediate values of z (except when z ≈ −k−1) are mapped into an arbitrarily small neighborhood of x, the value of the continued fraction, as n gets larger and larger. Intuitively, it is almost as if the convergent continued fraction maps the entire extended complex plane into a single point.[15]
Notice that the sequence {Τn} lies within the automorphism group of the extended complex plane, since each Τn is a linear fractional transformation for which ab ≠ cd. And every member of that automorphism group maps the extended complex plane into itself: not one of the Τn can possibly map the plane into a single point. Yet in the limit the sequence {Τn} defines an infinite continued fraction which (if it converges) represents a single point in the complex plane.
When an infinite continued fraction converges, the corresponding sequence {Τn} of LFTs "focuses" the plane in the direction of x, the value of the continued fraction. At each stage of the process a larger and larger region of the plane is mapped into a neighborhood of x, and the smaller and smaller region of the plane that's left over is stretched out ever more thinly to cover everything outside that neighborhood.[16]
For divergent continued fractions, we can distinguish three cases:
The two sequences {Τ2n−1} and {Τ2n} might themselves define two convergent continued fractions that have two different values, xodd and xeven. In this case the continued fraction defined by the sequence {Τn} diverges by oscillation between two distinct limit points. And in fact this idea can be generalized: sequences {Τn} can be constructed that oscillate among three, or four, or indeed any number of limit points. Interesting instances of this case arise when the sequence {Τn} constitutes a subgroup of finite order within the group of automorphisms over the extended complex plane.
The sequence {Τn} may produce an infinite number of zero denominators Bi while also producing a subsequence of finite convergents. These finite convergents may not repeat themselves or fall into a recognizable oscillating pattern. Or they may converge to a finite limit, or even oscillate among multiple finite limits. No matter how the finite convergents behave, the continued fraction defined by the sequence {Τn} diverges by oscillation with the point at infinity in this case.[17]
The sequence {Τn} may produce no more than a finite number of zero denominators Bi. while the subsequence of finite convergents dances wildly around the plane in a pattern that never repeats itself and never approaches any finite limit either.
Interesting examples of cases 1 and 3 can be constructed by studying the simple continued fraction
where z is any real number such that z < −1/4.[18]
From this many other results can be derived, such as
and
Euler's formula connecting continued fractions and series is the motivation for the fundamental inequalities[link or clarification needed], and also the basis of elementary approaches to the convergence problem.
Examples
Transcendental functions and numbers
Here are two continued fractions that can be built via Euler's identity.
Here are additional generalized continued fractions:
This last is based on an algorithm derived by Aleksei Nikolaevich Khovansky in the 1970s.[19]
Here are three of π's best-known generalized continued fractions, the first and third of which are derived from their respective arctangent formulas above by setting x = y = 1 and multiplying by 4. The Leibniz formula for π:
converges too slowly, requiring roughly 3 × 10n terms to achieve n correct decimal places. The series derived by Nilakantha Somayaji:
is a much more obvious expression but still converges quite slowly, requiring nearly 50 terms for five decimals and nearly 120 for six. Both converge sublinearly to π. On the other hand:
converges linearly to π, adding at least three digits of precision per four terms, a pace slightly faster than the arcsine formula for π:
which adds at least three decimal digits per five terms.[21]
Note: this continued fraction's rate of convergenceμ tends to 3 − √8 ≈ 0.1715729, hence 1/μ tends to 3 + √8 ≈ 5.828427, whose common logarithm is 0.7655... ≈ 13/17 > 3/4. The same 1/μ = 3 + √8 (the silver ratio squared) also is observed in the unfolded general continued fractions of both the natural logarithm of 2 and the nth root of 2 (which works for any integer n > 1) if calculated using 2 = 1 + 1. For the folded general continued fractions of both expressions, the rate convergence μ = (3 − √8)2 = 17 − √288 ≈ 0.02943725, hence 1/μ = (3 + √8)2 = 17 + √288 ≈ 33.97056, whose common logarithm is 1.531... ≈ 26/17 > 3/2, thus adding at least three digits per two terms. This is because the folded GCF folds each pair of fractions from the unfolded GCF into one fraction, thus doubling the convergence pace. The Manny Sardina reference further explains "folded" continued fractions.
Note: Using the continued fraction for arctanx/y cited above with the best-known Machin-like formula provides an even more rapidly, although still linearly, converging expression:
with u = 5 and v = 239.
Roots of positive numbers
The nth root of any positive number zm can be expressed by restating z = xn + y, resulting in
which can be simplified, by folding each pair of fractions into one fraction, to
The square root of z is a special case with m = 1 and n = 2:
which can be simplified by noting that 5/10 = 3/6 = 1/2:
The square root can also be expressed by a periodic continued fraction, but the above form converges more quickly with the proper x and y.
Example 1
The cube root of two (21/3 or 3√2 ≈ 1.259921...) can be calculated in two ways:
Firstly, "standard notation" of x = 1, y = 1, and 2z − y = 3:
Secondly, a rapid convergence with x = 5, y = 3 and 2z − y = 253:
Example 2
Pogson's ratio (1001/5 or 5√100 ≈ 2.511886...), with x = 5, y = 75 and 2z − y = 6325:
Example 3
The twelfth root of two (21/12 or 12√2 ≈ 1.059463...), using "standard notation":
Another meaning for generalized continued fraction is a generalization to higher dimensions. For example, there is a close relationship between the simple continued fraction in canonical form for the irrational real number α, and the way lattice points in two dimensions lie to either side of the line y = αx. Generalizing this idea, one might ask about something related to lattice points in three or more dimensions. One reason to study this area is to quantify the mathematical coincidence idea; for example, for monomials in several real numbers, take the logarithmic form and consider how small it can be. Another reason is to find a possible solution to Hermite's problem.
^This intuitive interpretation is not rigorous because an infinite continued fraction is not a mapping: it is the limit of a sequence of mappings. This construction of an infinite continued fraction is roughly analogous to the construction of an irrational number as the limit of a Cauchy sequence of rational numbers.
^Because of analogies like this one, the theory of conformal mapping is sometimes described as "rubber sheet geometry".
^One approach to the convergence problem is to construct positive definite continued fractions, for which the denominators Bi are never zero.
^This periodic fraction of period one is discussed more fully in the article convergence problem.
Chrystal, George (1999). Algebra, an Elementary Text-book for the Higher Classes of Secondary Schools and for Colleges: Pt. 1. American Mathematical Society. p. 500. ISBN0-8218-1649-7.
Havil, Julian (2012). The Irrationals: A Story of the Numbers You Can't Count On. Princeton University Press. p. 280. ISBN978-0691143422. JSTORj.ctt7smdw.
Lorentzen, Lisa; Waadeland, Haakon (1992). Continued Fractions with Applications. Reading, MA: North Holland. ISBN978-0-444-89265-2. (Covers primarily analytic theory and some arithmetic theory.)
Perron, Oskar (1977a) [1954]. Die Lehre von den Kettenbrüchen. Vol. Band I: Elementare Kettenbrüche (3 ed.). Vieweg + Teubner Verlag. ISBN9783519020219.
Perron, Oskar (1977b) [1954]. Die Lehre von den Kettenbrüchen. Vol. Band II: Analytisch-funktionentheoretische Kettenbrüche (3 ed.). Vieweg + Teubner Verlag. ISBN9783519020226.
Porubský, Štefan (2008). "Basic definitions for continued fractions". Interactive Information Portal for Algorithmic Mathematics. Prague, Czech Republic: Institute of Computer Science of the Czech Academy of Sciences. Retrieved 2 May 2022.
Wall, Hubert Stanley (1967). Analytic Theory of Continued Fractions (Reprint ed.). Chelsea Pub Co. ISBN0-8284-0207-8. (This reprint of the D. Van Nostrand edition of 1948 covers both history and analytic theory.)
Wallis, John (1699). Opera mathematica [Mathematical Works].
Katrin Siska Katrin Siska (lahir 10 Desember 1983) adalah seorang selebritas, vloger dan pemusik asal Estonia. Ia merupakan mantan anggota grup vokal wanita Vanilla Ninja. Pranala luar Wikimedia Commons memiliki media mengenai Katrin Siska. Situs web resmi Vanilla Ninja (bahasa Inggris, Esti) Katrin Siska di IMDb (dalam bahasa Inggris) Pengawasan otoritas Umum VIAF 1 WorldCat (via VIAF) Lain-lain MusicBrainz artist Artikel bertopik biografi Estonia ini adalah sebuah rintisan. Anda dapat memba...
Kapel SistinaSacellum Sixtinumcode: la is deprecated (Latin)Cappella Sistinacode: it is deprecated (Italia)Dinding timur Kapel Sistina dilihat dari altarAgamaAfiliasiKristen KatolikDistrikKeuskupan RomaEcclesiastical or organizational statusOratorium KepausanKepemimpinanFransiskusDiberkati15 Agustus 1483LokasiLokasiKota VatikanLua error in Modul:Location_map at line 539: Tidak dapat menemukan definisi peta lokasi yang ditentukan. Baik "Modul:Location map/data/Vati...
G-20 ekonomi utama (serapan dari Belanda: politicuscode: nl is deprecated ; sinonim: politisi) adalah seseorang yang terlibat dalam politik. Dan juga termasuk para ahli politik[1]. Politisi juga termasuk figur politik yang ikut serta dalam pemerintahan. Menjadi politisi atau politikus berarti menjadi penyambung suara masyarakat, karena kerjaan politisi ialah menjalankan kebijakan berdasarkan aspirasi masyarakat, para politikus biasa kita jumpai menjadi kepala pemerintahan atau sebagai...
Lan Mao, sebuah karakter dari Hunan, Tiongkok. Ada usul agar Donghua diganti judulnya dan dipindahkan ke Animasi Tionghoa (Diskusikan). Animasi Tionghoa atau Donghua (Hanzi sederhana: 华人制动画; Hanzi tradisional: 華人製動畫; Hanyu Pinyin: Huárénzhì Dònghuà) merujuk kepada animasi yang dibuat di Tiongkok, Hong Kong, Makau, dan Taiwan. Sejarah Artikel utama: Sejarah animasi Tiongkok Animasi modern Tionghoa dimulai pada 1918 ketika sebuah karya animasi dari Amerika Serikat y...
2014 single by Drake0 to 100 / The Catch UpSingle by DrakeReleasedJuly 15, 2014 (2014-07-15)Recorded2014GenreHip hopLength6:08 (single version) 4:35 (radio edit)Label Young Money Cash Money Republic Songwriter(s) Aubrey Graham Anderson Hernandez Matthew Samuels Noah Shebib Paul Jefferies Adam Feeney Chester Hansen Producer(s) Boi-1da Vinylz Frank Dukes (0 to 100) Nineteen85 40 (The Catch Up)[1] Drake singles chronology Worst Behavior (2014) 0 to 100 / The Catch Up (2014...
Internet exchange point system of Brazil IX.brLocation BrazilWebsiteix.br IX.br is the Internet exchange point system of Brazil. It is a project of the government agency Comitê Gestor da Internet no Brasil (Brazilian Internet Steering Committee, CGI.br), and operates as a non-profit funded by NIC.br.[1] IX.br is an interconnection of metropolitan area network IXPs (called PIXes in Brazil) with commercial and academic networks, under centralized management. IX.br has 36 Internet ...
Cet article concerne l'édition 2016 du pay-per-view Extreme Rules. Pour toutes les autres éditions, voir WWE Extreme Rules. Extreme Rules (2016)Logo officiel d'Extreme Rules 2016Main event Roman Reigns contre A.J Styles pour le WWE World Heavyweight ChampionshipSlogan There are no rules. Extreme Rules (Il n'y a pas de règles. Extreme Rules)Thème musical Fire de PVRISInformationsFédération World Wrestling EntertainmentSponsor Teenage Mutant Ninja Turtles: Out of the ShadowsDate 22 m...
Battle in the 2022 Russian invasion of Ukraine Not to be confused with Battle on the Irpin River in the 1320s. Battle of IrpinPart of the Kyiv offensive of the 2022 Russian invasion of UkraineDate27 February – 28 March 2022(1 month and 1 day)LocationIrpin, UkraineResult Ukrainian victoryBelligerents Russia UkraineCommanders and leaders Unknown Oleksiy Kuleba[1] Oleksandr Markushyn[2]Units involved Russian Armed Forces Russian Airborne Forces ...
American film directed by Charles Barton The Shaggy DogTheatrical release posterDirected byCharles BartonScreenplay byLillie HaywardBill WalshBased onThe Hound of Florenceby Felix SaltenProduced byWalt DisneyBill WalshStarring Fred MacMurray Jean Hagen Tommy Kirk Annette Funicello Cecil Kellaway Alexander Scourby James Westerfield Jacques Aubuchon Narrated byPaul FreesCinematographyEdward ColmanEdited byJames BallasMusic byPaul J. SmithProductioncompanyWalt Disney ProductionsDistributed byBue...
العلاقات اليابانية الكيريباتية اليابان كيريباتي اليابان كيريباتي تعديل مصدري - تعديل العلاقات اليابانية الكيريباتية هي العلاقات الثنائية التي تجمع بين اليابان وكيريباتي.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتي�...
Subgroup of the Algonquian languages Eastern AlgonquianEastern AlgonkianGeographicdistributionAtlantic Coast of North AmericaLinguistic classificationAlgicAlgonquianEastern AlgonquianProto-languageProto-Eastern AlgonquianSubdivisions Abenakian? (Abenaki, Etchemin, Maliseet–Passamaquoddy, and Mi'kmaq) Southern New England? (Loup A and B, Massachusett, Mohegan–Pequot, Narragansett, and Quiripi) Delawaran[1][2][3] (Delaware and Mohican) Nanticockan? (Nanticoke and Pis...
У этого термина существуют и другие значения, см. Патриарх (значения). Патриа́рх (греч. πατριάρχης[1], от πατήρ — «отец» и ἀρχή — «власть»[2]) — титул епископа-предстоятеля автокефальной Православной церкви в ряде поместных церквей. Исторически, до Великого раск...
Railway in England Coventry to Leamington LineA CrossCountry Voyager service on the line at Milverton.OverviewStatusOperationalOwnerNetwork RailLocaleWest Midlands (region)TerminiCoventryLeamington SpaServiceSystemNational RailOperator(s)CrossCountryWest Midlands TrainsRolling stockClass 220Class 221Class 172HistoryOpened1851TechnicalNumber of tracks1–2Track gauge4 ft 8+1⁄2 in (1,435 mm) standard gauge Route map (Click to expand) vteCoventry–Leamington line Legen...
B.26 Botha Blackburn B.26 Botha Role Torpedo bomberType of aircraft Manufacturer Blackburn Aircraft First flight 28 December 1938 Introduction 12 December 1939 Retired September 1944 Primary user Royal Air Force Number built 580 The Blackburn B.26 Botha was a four-seat reconnaissance and torpedo bomber. It was produced by the British aviation company Blackburn Aircraft at its factories at Brough and Dumbarton. The Botha was developed during the mid 1930s in response to Air Ministry Spec...
2011 novel by Tom Clancy Against All Enemies First edition coverAuthorTom Clancy with Peter TelepAudio read bySteven WeberCountryUnited StatesLanguageEnglishGenre Spy fiction Techno-thriller Military fiction PublisherG.P. Putnam's SonsPublication dateJune 14, 2011Media typePrint (Hardcover, Paperback), Audio, eBookPages768ISBN978-0-399-15730-1 Against All Enemies is a spy thriller novel, written by Tom Clancy and co-authored with Peter Telep, and published on June 14, 2011. Whi...
Book by Claire Messud The Emperor's Children AuthorClaire MessudCountryUnited StatesLanguageEnglishPublished2006 (Knopf)Media typePrint (hardback) The Emperor's Children is a 2006 novel by the American author Claire Messud. It is the author's third novel—and her first best-seller. It was longlisted for the 2006 Man Booker Prize. The novel focuses on the stories of three friends in their early thirties, living in Manhattan in the months leading up to the attacks on the World Trade Cente...
عبد الله مسفر معلومات شخصية الميلاد 28 يناير 1962 (62 سنة) أبو ظبي الجنسية الإمارات العربية المتحدة Jordan United Arab Emirates U23 United Arab Emirates (interim) Dibba Al-Fujairah Baniyas الفرق التي دربها 2015–2016 2000 Dhafra Fujairah (interim) United Arab Emirates 2016–2017 United Arab Emirates U19 2021 2011–2012 تعديل مصدري - تعديل عبد الله أحمد ...
Community development block in West Bengal, IndiaPurulia ICommunity development blockCoordinates: 23°19′26″N 86°20′44″E / 23.3238140°N 86.3456726°E / 23.3238140; 86.3456726Country IndiaStateWest BengalDistrictPuruliaGovernment • TypeCommunity development blockArea • Total281.50 km2 (108.69 sq mi)Elevation240 m (790 ft)Population (2011) • Total151,188 • Density540/km2 (1,400/s...