Euler's continued fraction formula

In the analytic theory of continued fractions, Euler's continued fraction formula is an identity connecting a certain very general infinite series with an infinite continued fraction. First published in 1748, it was at first regarded as a simple identity connecting a finite sum with a finite continued fraction in such a way that the extension to the infinite case was immediately apparent.[1] Today it is more fully appreciated as a useful tool in analytic attacks on the general convergence problem for infinite continued fractions with complex elements.

The original formula

Euler derived the formula as connecting a finite sum of products with a finite continued fraction.

The identity is easily established by induction on n, and is therefore applicable in the limit: if the expression on the left is extended to represent a convergent infinite series, the expression on the right can also be extended to represent a convergent infinite continued fraction.

This is written more compactly using generalized continued fraction notation:

Euler's formula

If ri are complex numbers and x is defined by

then this equality can be proved by induction

.

Here equality is to be understood as equivalence, in the sense that the n'th convergent of each continued fraction is equal to the n'th partial sum of the series shown above. So if the series shown is convergent – or uniformly convergent, when the ri's are functions of some complex variable z – then the continued fractions also converge, or converge uniformly.[2]

Proof by induction

Theorem: Let be a natural number. For complex values ,

and for complex values ,

Proof: We perform a double induction. For , we have

and

Now suppose both statements are true for some .

We have where

by applying the induction hypothesis to .

But if implies implies , contradiction. Hence

completing that induction.

Note that for ,

if , then both sides are zero.

Using and , and applying the induction hypothesis to the values ,

completing the other induction.

As an example, the expression can be rearranged into a continued fraction.

This can be applied to a sequence of any length, and will therefore also apply in the infinite case.

Examples

The exponential function

The exponential function ex is an entire function with a power series expansion that converges uniformly on every bounded domain in the complex plane.

The application of Euler's continued fraction formula is straightforward:

Applying an equivalence transformation that consists of clearing the fractions this example is simplified to

and we can be certain that this continued fraction converges uniformly on every bounded domain in the complex plane because it is equivalent to the power series for ex.

The natural logarithm

The Taylor series for the principal branch of the natural logarithm in the neighborhood of 1 is well known:

This series converges when |x| < 1 and can also be expressed as a sum of products:[3]

Applying Euler's continued fraction formula to this expression shows that

and using an equivalence transformation to clear all the fractions results in


This continued fraction converges when |x| < 1 because it is equivalent to the series from which it was derived.[3]

The trigonometric functions

The Taylor series of the sine function converges over the entire complex plane and can be expressed as the sum of products.

Euler's continued fraction formula can then be applied

An equivalence transformation is used to clear the denominators:

The same argument can be applied to the cosine function:

The inverse trigonometric functions

The inverse trigonometric functions can be represented as continued fractions.

An equivalence transformation yields

The continued fraction for the inverse tangent is straightforward:

A continued fraction for π

We can use the previous example involving the inverse tangent to construct a continued fraction representation of π. We note that

And setting x = 1 in the previous result, we obtain immediately

The hyperbolic functions

Recalling the relationship between the hyperbolic functions and the trigonometric functions,

And that the following continued fractions are easily derived from the ones above:

The inverse hyperbolic functions

The inverse hyperbolic functions are related to the inverse trigonometric functions similar to how the hyperbolic functions are related to the trigonometric functions,

And these continued fractions are easily derived:

See also

References

  1. ^ Leonhard Euler (1748), "18", Introductio in analysin infinitorum, vol. I
  2. ^ H. S. Wall, Analytic Theory of Continued Fractions, D. Van Nostrand Company, Inc., 1948; reprinted (1973) by Chelsea Publishing Company ISBN 0-8284-0207-8, p. 17.
  3. ^ a b This series converges for |x| < 1, by Abel's test (applied to the series for log(1 − x)).

Read other articles:

CupidCupid dilihat dari Teleskop HubblePenemuanDitemukan olehMark R. Showalter dan Jack J. LissauerTanggal penemuan25 Agustus 2003PenamaanPenamaanUranus XXVIIPelafalan/ˈkjuːpəd/Kata sifat bahasa InggrisCupidian /kjuːˈpɪdiən/[1]Ciri-ciri orbitSumbu semimayor74,392 kmEksentrisitas0.0013Periode orbit0.618 dInklinasi0.1° (ke khatulistiwa Uranus)Satelit dariUranusCiri-ciri fisikJari-jari rata-rata~9 km[2]Luas permukaan~1,000 km2Volume~3,000 km3Massa...

 

 

Halaman ini berisi artikel tentang pemeran dan pelawak. Untuk gubernur Georgia, lihat Joseph E. Brown. Untuk legislator Carolina Selatan, lihat Joe Ellis Brown. Joe E. BrownBrown pada 1945LahirJoseph Evans Brown(1891-07-28)28 Juli 1891Holgate, Ohio, Amerika SerikatMeninggal6 Juli 1973(1973-07-06) (umur 81)Brentwood, Los Angeles, California, Amerika SerikatTahun aktif1928–1964Suami/istriKathryn Francis McGraw ​ ​(m. 1915)​Anak4 Joseph Evans Brown ...

 

 

Katedral GiovinazzoKatedral Santa Maria Diangkat ke SurgaItalia: Concattedrale di S. Maria Assuntacode: it is deprecated Katedral GiovinazzoLokasiGiovinazzoNegaraItaliaDenominasiGereja Katolik RomaArsitekturStatusKatedralStatus fungsionalAktifAdministrasiKeuskupanKeuskupan Molfetta-Ruvo-Giovinazzo-Terlizzi Katedral Giovinazzo (Italia: Duomo di Giovinazzocode: it is deprecated ) yang bernama resmi Katedral Santa Maria Diangkat ke Surga adalah sebuah gereja katedral Katolik yang terletak di Gio...

Acacia seyal Klasifikasi ilmiah Kerajaan: Plantae (tanpa takson): Angiospermae (tanpa takson): Eudikotil (tanpa takson): Rosida Ordo: Fabales Famili: Fabaceae Genus: Acacia Spesies: A. seyal Nama binomial Acacia seyalDel. Varietas[1][2] Vachellia seyal var. fistula (Schweinf.) Kyal. & Boatwr. Vachellia seyal var. seyal (Del.) P.J.H.Hurter Sinonim[3] Acacia fistula Schweinf. Acacia flava (Forssk.) Schweinf. var. seyal (Del.) Roberty Acacia stenocarpa A. Rich. ...

 

 

American reconnaissance satellite launched in 1959; failed to achieve orbit Discoverer 1An Agena-A stage [1]Mission typeTechnologyOperatorU.S. Air Force / CIAHarvard designation1959 Beta 1COSPAR ID1959-002A SATCAT no.00013Mission duration17 days Spacecraft propertiesSpacecraftDiscovererSpacecraft typeCORONA Test VehicleBusAgena-AManufacturerDouglas Aircraft CompanyLaunch mass618 kgDimensions5.73 m long1.52 m diameter Start of missionLaunch date28 February 1959,21:49:16 GMTRocketThor-A...

 

 

Tarot card of the Major Arcana This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: The Devil tarot card – news · newspapers · books · scholar · JSTOR (April 2009) (Learn how and when to remove this template message) The Devil (XV) from the Rider–Waite tarot deck The Devil (XV) is the fifteenth trump or Ma...

Cet article est une ébauche concernant le cyclisme et la Suisse. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Tour de Romandie 2017 GénéralitésCourse71e Tour de RomandieCompétitionUCI World Tour 2017 2.UWTÉtapes6Dates25 – 30 avril 2017Distance682,98 kmPays SuisseLieu de départAigleLieu d'arrivéeLausanneÉquipes19Partants152Arrivants131Vitesse moyenne39,554 km/hSite officielSite officielRésultatsVai...

 

 

Синелобый амазон Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:ЗавропсидыКласс:Пт�...

 

 

Voce principale: Prima Divisione 1950-1951. Prima Divisione Sicilia 1950-1951 Competizione Prima Divisione Sport Calcio Edizione Organizzatore FIGC eLega Regionale Sicula Luogo  Italia Risultati Promozioni Riposto e Modica Retrocessioni Niscemi, Taormina, Sals Villafranca e Termini Imerese Cronologia della competizione 1949-1950 1951-1952 Manuale La Prima Divisione fu il massimo campionato regionale di calcio disputato in Sicilia nella stagione 1950-1951. Indice 1 Composizione 1.1 Squad...

Сибирский горный козёл Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:СинапсидыКла�...

 

 

ХристианствоБиблия Ветхий Завет Новый Завет Евангелие Десять заповедей Нагорная проповедь Апокрифы Бог, Троица Бог Отец Иисус Христос Святой Дух История христианства Апостолы Хронология христианства Раннее христианство Гностическое христианство Вселенские соборы Н...

 

 

Election in Texas Main article: 2012 United States presidential election 2012 United States presidential election in Texas ← 2008 November 6, 2012 2016 → Turnout58.6% (of registered voters) 43.7% (of voting age population)[1]   Nominee Mitt Romney Barack Obama Party Republican Democratic Home state Massachusetts Illinois Running mate Paul Ryan Joe Biden Electoral vote 38 0 Popular vote 4,569,843 3,308,124 Percentage 57.17% 41.38% County R...

Sceaux 行政国 フランス地域圏 (Région) イル=ド=フランス地域圏県 (département) オー=ド=セーヌ県郡 (arrondissement) アントニー郡小郡 (canton) 小郡庁所在地INSEEコード 92071郵便番号 92330市長(任期) フィリップ・ローラン(2008年-2014年)自治体間連合 (fr) メトロポール・デュ・グラン・パリ人口動態人口 19,679人(2007年)人口密度 5466人/km2住民の呼称 Scéens地理座標 北緯48度4...

 

 

穆罕默德·达乌德汗سردار محمد داود خان‎ 阿富汗共和國第1任總統任期1973年7月17日—1978年4月28日前任穆罕默德·查希爾·沙阿(阿富汗國王)继任穆罕默德·塔拉基(阿富汗民主共和國革命委員會主席團主席) 阿富汗王國首相任期1953年9月7日—1963年3月10日君主穆罕默德·查希爾·沙阿 个人资料出生(1909-07-18)1909年7月18日 阿富汗王國喀布尔逝世1978年4月28日(...

 

 

Not to be confused with Pakistani cricket team in Zimbabwe in 2020–21. International cricket tour Zimbabwean cricket team in Pakistan in 2020–21    Pakistan ZimbabweDates 30 October – 10 November 2020Captains Babar Azam Chamu ChibhabhaOne Day International seriesResults Pakistan won the 3-match series 2–1Most runs Babar Azam (221) Brendan Taylor (204)Most wickets Four bowlers took five wickets each[n 1] Blessing Muzarabani (7)Player of the series Babar Azam (Pak...

German architect Alfred MesselMessel, c. 1900Born22 July 1853Bruck an der Mur, AustriaDied24 March 1909NationalityGermanOccupationArchitect Alfred Messel (22 July 1853 – 24 March 1909) was a German architect at the turning point to the 20th century, creating a new style for buildings which bridged the transition from historicism to modernism. Messel was able to combine the structure, decoration, and function of his buildings, which ranged from department stores, museums, office buildings, m...

 

 

Bruno PesaolaPesaola alla guida della Fiorentina fra gli anni 60 e 70 del XX secoloNazionalità Argentina Italia (dal 1953) Altezza165[1] cm Peso74 kg Calcio RuoloAllenatore (ex attaccante) Termine carriera1962 - giocatore1985 - allenatore CarrieraGiovanili 1939-1944 River Plate Squadre di club1 1944-1946 Dock Sud84 (26)1947-1950 Roma90 (20)1950-1952 Novara64 (15)1952-1960 Napoli240 (27)1960-1961 Genoa20 (5)1961-1962 Scafatese? (?) Nazional...

 

 

Chabacano redirects here. For the Mexico City Metro station, see Chabacano metro station. Spanish-based creole of the Philippines ChavacanoChabacanoNative toPhilippinesRegionZamboanga City and Basilan (Zamboangueño and Basileño), Cavite City (Caviteño) and Ternate, Cavite (Ternateño/Bahra)Ethnicity Zamboangueño Spanish Filipino Native speakers(700,000 native speakers; 1.2 million as a second language;[1] cited 1992)[2][3][needs update]Language familyS...

American professional basketball team of the NBA G League Grand Rapids Gold 2023–24 NBA G League seasonConferenceEasternLeagueNBA G LeagueFounded2006HistoryAnaheim Arsenal2006–2009Springfield Armor2009–2014Grand Rapids Drive2014–2021Grand Rapids Gold2021–presentArenaVan Andel ArenaLocationGrand Rapids, MichiganTeam colorsMidnight blue, sunshine yellow, Flatirons red, white[1][2][3]       PresidentSteve JbaraHead coachAndre MillerOwnershipS...

 

 

French regional airline Atlas Atlantique Airlines IATA ICAO Callsign L5 TLB TRIPLE ALPHA Founded1989Ceased operationsOctober 2017HubsNantes Atlantique AirportSecondary hubsChâlons Vatry AirportFleet size6Destinations9HeadquartersLa Chevrolière, FranceKey peopleAndré Besseau (CEO)Websiteatlasatlantiqueairlines.com Atlas Atlantique Airlines, formerly Atlantique Air Assistance, was a French regional airline headquartered in La Chevrolière.[1] The airline's base was at Nantes Atlantiq...