Fixed point (mathematics)

The function (shown in red) has the fixed points 0, 1, and 2.

In mathematics, a fixed point (sometimes shortened to fixpoint), also known as an invariant point, is a value that does not change under a given transformation. Specifically, for functions, a fixed point is an element that is mapped to itself by the function. Any set of fixed points of a transformation is also an invariant set.

Fixed point of a function

Formally, c is a fixed point of a function f if c belongs to both the domain and the codomain of f, and f(c) = c. In particular, f cannot have any fixed point if its domain is disjoint from its codomain. If f is defined on the real numbers, it corresponds, in graphical terms, to a curve in the Euclidean plane, and each fixed-point c corresponds to an intersection of the curve with the line y = x, cf. picture.

For example, if f is defined on the real numbers by then 2 is a fixed point of f, because f(2) = 2.

Not all functions have fixed points: for example, f(x) = x + 1 has no fixed points because x + 1 is never equal to x for any real number.

Fixed point iteration

In numerical analysis, fixed-point iteration is a method of computing fixed points of a function. Specifically, given a function with the same domain and codomain, a point in the domain of , the fixed-point iteration is

which gives rise to the sequence of iterated function applications which is hoped to converge to a point . If is continuous, then one can prove that the obtained is a fixed point of .

The notions of attracting fixed points, repelling fixed points, and periodic points are defined with respect to fixed-point iteration.

Fixed-point theorems

A fixed-point theorem is a result saying that at least one fixed point exists, under some general condition.[1]

For example, the Banach fixed-point theorem (1922) gives a general criterion guaranteeing that, if it is satisfied, fixed-point iteration will always converge to a fixed point.

The Brouwer fixed-point theorem (1911) says that any continuous function from the closed unit ball in n-dimensional Euclidean space to itself must have a fixed point, but it doesn't describe how to find the fixed point.

The Lefschetz fixed-point theorem (and the Nielsen fixed-point theorem) from algebraic topology give a way to count fixed points.

Fixed point of a group action

In algebra, for a group G acting on a set X with a group action , x in X is said to be a fixed point of g if .

The fixed-point subgroup of an automorphism f of a group G is the subgroup of G:

Similarly, the fixed-point subring of an automorphism f of a ring R is the subring of the fixed points of f, that is,

In Galois theory, the set of the fixed points of a set of field automorphisms is a field called the fixed field of the set of automorphisms.

Topological fixed point property

A topological space is said to have the fixed point property (FPP) if for any continuous function

there exists such that .

The FPP is a topological invariant, i.e., it is preserved by any homeomorphism. The FPP is also preserved by any retraction.

According to the Brouwer fixed-point theorem, every compact and convex subset of a Euclidean space has the FPP. Compactness alone does not imply the FPP, and convexity is not even a topological property, so it makes sense to ask how to topologically characterize the FPP. In 1932 Borsuk asked whether compactness together with contractibility could be a necessary and sufficient condition for the FPP to hold. The problem was open for 20 years until the conjecture was disproved by Kinoshita, who found an example of a compact contractible space without the FPP.[2]

Fixed points of partial orders

In domain theory, the notion and terminology of fixed points is generalized to a partial order. Let ≤ be a partial order over a set X and let f: XX be a function over X. Then a prefixed point (also spelled pre-fixed point, sometimes shortened to prefixpoint or pre-fixpoint)[citation needed] of f is any p such that f(p) ≤ p. Analogously, a postfixed point of f is any p such that pf(p).[3] The opposite usage occasionally appears.[4] Malkis justifies the definition presented here as follows: "since f is before the inequality sign in the term f(x) ≤ x, such x is called a prefix point."[5] A fixed point is a point that is both a prefixpoint and a postfixpoint. Prefixpoints and postfixpoints have applications in theoretical computer science.[6]

Least fixed point

In order theory, the least fixed point of a function from a partially ordered set (poset) to itself is the fixed point which is less than each other fixed point, according to the order of the poset. A function need not have a least fixed point, but if it does then the least fixed point is unique.

One way to express the Knaster–Tarski theorem is to say that a monotone function on a complete lattice has a least fixed point that coincides with its least prefixpoint (and similarly its greatest fixed point coincides with its greatest postfixpoint).[7]

Fixed-point combinator

In combinatory logic for computer science, a fixed-point combinator is a higher-order function that returns a fixed point of its argument function, if one exists. Formally, if the function f has one or more fixed points, then

Fixed-point logics

In mathematical logic, fixed-point logics are extensions of classical predicate logic that have been introduced to express recursion. Their development has been motivated by descriptive complexity theory and their relationship to database query languages, in particular to Datalog.

Applications

In many fields, equilibria or stability are fundamental concepts that can be described in terms of fixed points. Some examples follow.

See also

Notes

  1. ^ Brown, R. F., ed. (1988). Fixed Point Theory and Its Applications. American Mathematical Society. ISBN 0-8218-5080-6.
  2. ^ Kinoshita, Shin'ichi (1953). "On Some Contractible Continua without Fixed Point Property". Fund. Math. 40 (1): 96–98. doi:10.4064/fm-40-1-96-98. ISSN 0016-2736.
  3. ^ Smyth, Michael B.; Plotkin, Gordon D. (1982). "The Category-Theoretic Solution of Recursive Domain Equations" (PDF). Proceedings, 18th IEEE Symposium on Foundations of Computer Science. SIAM Journal of Computing (volume 11). pp. 761–783. doi:10.1137/0211062.
  4. ^ Patrick Cousot; Radhia Cousot (1979). "Constructive Versions of Tarski's Fixed Point Theorems" (PDF). Pacific Journal of Mathematics. 82 (1): 43–57. doi:10.2140/pjm.1979.82.43.
  5. ^ Malkis, Alexander (2015). "Multithreaded-Cartesian Abstract Interpretation of Multithreaded Recursive Programs Is Polynomial" (PDF). Reachability Problems. Lecture Notes in Computer Science. Vol. 9328. pp. 114–127. doi:10.1007/978-3-319-24537-9_11. ISBN 978-3-319-24536-2. S2CID 17640585. Archived from the original (PDF) on 2022-08-10.
  6. ^ Yde Venema (2008) Lectures on the Modal μ-calculus Archived March 21, 2012, at the Wayback Machine
  7. ^ Yde Venema (2008) Lectures on the Modal μ-calculus Archived March 21, 2012, at the Wayback Machine
  8. ^ Coxeter, H. S. M. (1942). Non-Euclidean Geometry. University of Toronto Press. p. 36.
  9. ^ G. B. Halsted (1906) Synthetic Projective Geometry, page 27
  10. ^ Wilson, Kenneth G. (1971). "Renormalization Group and Critical Phenomena. I. Renormalization Group and the Kadanoff Scaling Picture". Physical Review B. 4 (9): 3174–3183. Bibcode:1971PhRvB...4.3174W. doi:10.1103/PhysRevB.4.3174.
  11. ^ Wilson, Kenneth G. (1971). "Renormalization Group and Critical Phenomena. II. Phase-Space Cell Analysis of Critical Behavior". Physical Review B. 4 (9): 3184–3205. Bibcode:1971PhRvB...4.3184W. doi:10.1103/PhysRevB.4.3184.
  12. ^ "P. Cousot & R. Cousot, Abstract interpretation: A unified lattice model for static analysis of programs by construction or approximation of fixpoints".

Read other articles:

Bhumi PednekarPednekar mempromosikan Sonchiriya pada 2019Lahir18 Juli 1989 (umur 34)[1][2]Bombay, (sekarang Mumbai) Maharashtra, India[2]PekerjaanAktrisTahun aktif2015–sekarang Bhumi Pednekar (lahir 18 Juli 1989) adalah seorang aktris film India. Setelah berkarya sebagai asisten sutradara di Yash Raj Films selama enam tahun, Pednekar membuat debut filmnya sebagai mempelai kelebihan berat badan dalam film komedi romansa Dum Laga Ke Haisha (2015), yang membu...

 

 

Эта статья об острове; о государстве см. Мадагаскар. У этого термина существуют и другие значения, см. Мадагаскар (значения). Мадагаскармалаг. Madagasikara Характеристики Площадь587 000 км² Наивысшая точка2876 м Население25 612 972 чел. (2017) Плотность населения43,63 че...

 

 

Osvaldo Bagnoli Bagnoli nel 1984 Nazionalità  Italia Altezza 170 cm Peso 69 kg Calcio Ruolo Allenatore (ex centrocampista) Termine carriera 1973 - giocatore1995 - allenatore Carriera Giovanili 19??-1954 Ausonia 19311954-1955 Milan Squadre di club1 1955-1957 Milan18 (2)1957-1960 Verona97 (27)1960-1961 Udinese11 (1)1961-1964 Catanzaro102 (22)1964-1967 SPAL92 (12)1967-1968 Udinese22 (4)1968-1973 Verbania135 (23) Carriera da allenatore 1969-1970 ...

Water-polo aux Jeux olympiques d'été de 1924 Généralités Sport Water-polo Éditions 6e Lieu(x) Paris Participants ? équipes Épreuves 1 Palmarès Tenant du titre  Grande-Bretagne Vainqueur  France Deuxième  Belgique Troisième  États-Unis Navigation Anvers 1920 Amsterdam 1928 modifier L'équipe de France de water-polo, championne olympique en 1924. Résultats du tournoi olympique masculin de Water polo aux Jeux olympiques d'été de 1924 à Paris. Podiums Or A...

 

 

Princess of RomePoster film promosional untuk Princess of RomeNama lainشاهزاده رومProduserHamad JafariDitulis oleh Zahra Barti Abbas Sharara Hadi Mohammadian Hamed Jafari Penata musikArya AziminejadPenyuntingHassan AyoubiDistributorPuya art groupTanggal rilis Februari 2015 (2015-02) (Festival Film Internasional Fajr ke-33) Durasi75 menitNegaraIranBahasaPersia, Arab Princess of Rome (Persia: شاهزاده روم) adalah sebuah film animasi komputer Iran tent...

 

 

1963 Swedish filmRaven's EndSwedish posterDirected byBo WiderbergWritten byBo WiderbergProduced byWaldemar BergendahlStarringThommy BerggrenKeve HjelmCinematographyJan LindeströmEdited byWic KjellinRelease date 26 December 1963 (1963-12-26) Running time101 minutesCountrySwedenLanguageSwedish Raven's End (Swedish: Kvarteret Korpen) is a 1963 Swedish drama film directed by Bo Widerberg, about an aspiring working-class writer in Malmö. The story bears some similarities to Widerb...

Town in New South Wales, AustraliaCumborahNew South WalesThe main intersection in Cumborah.CumborahCoordinates29°44′0″S 147°47′0″E / 29.73333°S 147.78333°E / -29.73333; 147.78333Population492 (2006 census)[1]Established1896Postcode(s)2832Elevation163 m (535 ft)Location 48 km (30 mi) NW of Walgett 50 km (31 mi) SW of Lightning Ridge LGA(s)Walgett ShireCountyFinchState electorate(s)BarwonFederal division(s)Parkes Cu...

 

 

Former Texas-based bank This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Texas Commerce Bank – news · newspapers · books · scholar · JSTOR (October 2009) (Learn how and when to remove this message) Texas Commerce Bancshares, Inc. Logo JPMorgan Chase Building (formerly Gulf Building), the headquarters of the b...

 

 

2008 studio album by DJ KhaledWe GlobalStudio album by DJ KhaledReleasedSeptember 16, 2008 (2008-09-16)RecordedNovember 2007 – June 2008StudioTerror Squad Studios, The Bronx, New York City, New York, U.S., We the Best Studios North Miami, FloridaGenreHip hopLength63:58Label We the Best Terror Squad Koch Producer DJ Khaled The Runners Timbaland The Inkredibles Isaac Opus DJ Nasty & LVM Danja Gold Ru$h Lu Diaz Cool & Dre DJ Khaled chronology We the Best(2007) W...

Diploma Perang Kemerdekaan II Satyalancana Perang Kemerdekaan II adalah sebuah tanda kehormatan yang diberikan kepada anggota Angkatan Bersenjata yang mengikuti sepenuhnya peristiwa Perang Kemerdekaan I dari tanggal 18 Desember 1948 sampai dengan 27 Desember 1949, kecuali dalam hal mereka tertawan, mendapat luka-luka dan invalid. (Pasal 18 ayat 1 UU no.70/1958) Referensi (Indonesia) Penetapan Undang-undang Darurat No. 2 Tahun 1958 tentang Tanda-tanda Penghargaan untuk Anggota Angkatan Perang ...

 

 

Coordinate: 40°55′23.01″N 14°44′40.82″E / 40.923059°N 14.744672°E40.923059; 14.744672 Funicolare di MontevergineLa stazione a valleLocalizzazioneStato Italia LocalitàMercogliano Dati tecniciTipofunicolare Stato attualein uso Apertura1956 GestoreA.IR. PercorsoStazione a valleMercogliano Stazione a monteMontevergine Tempo di percorrenza7 minuti Lunghezza1.669,25 m Dislivello734 m Pendenza max64% Interscambioautobus per Avellino Dintornisantuario ...

 

 

此条目序言章节没有充分总结全文内容要点。 (2019年3月21日)请考虑扩充序言,清晰概述条目所有重點。请在条目的讨论页讨论此问题。 哈萨克斯坦總統哈薩克總統旗現任Қасым-Жомарт Кемелұлы Тоқаев卡瑟姆若马尔特·托卡耶夫自2019年3月20日在任任期7年首任努尔苏丹·纳扎尔巴耶夫设立1990年4月24日(哈薩克蘇維埃社會主義共和國總統) 哈萨克斯坦 哈萨克斯坦政府...

Measure of the potential of natural satellites to have environments hospitable to life Europa, a potentially habitable moon of Jupiter This article is one of a series on:Life in the universe Outline Planetary habitability in the Solar System Venus Earth Mars Europa Enceladus Titan Life outside the Solar System Potentially habitable exoplanets Galactic habitable zone Habitability of... Binary star systems Natural satellites Neutron star systems Red dwarf systems K-type main-sequence star syste...

 

 

Yang MuliaAdalberto Martínez FloresUskup Agung AsunciónGerejaGereja Katolik RomaKeuskupan agungAsunciónTakhtaAsunciónPenunjukan17 Februari 2022Awal masa jabatan6 Maret 2022PendahuluEdmundo Ponziano Valenzuela MellidJabatan lainPresiden Konferensi Episkopal Paraguay (2018-)Administrator Apostolik Ordinariat Militer Paraguay (2018-)ImamatTahbisan imam24 Agustus 1985oleh Seán Patrick O'MalleyTahbisan uskup8 November 1997oleh Felipe Santiago Benítez ÁvalosPelantikan kardinal27 Ag...

 

 

American college basketball season This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: 1903–04 Bucknell Bison men's basketball team – news · newspapers · books · scholar · JSTOR (June 2022) 1903–04 Bucknell Bison men's basketballConferenceIndependentRecord7–5Head coachStudent coachesCaptainP...

General of Oda Nobunaga following the Sengoku period This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (January 2017) (Learn how and when to remove this message) In this Japanese name, the surname is Maeda. Maeda Toshiie前田 利家Maeda ToshiieHead of Maeda clanIn office1560–1599Preceded byMaeda ToshimasaSucceeded byMaeda ToshinagaLord of KanazawaIn office15...

 

 

2015 film by Anupam Sharma unINDIANFilm posterDirected byAnupam SharmaWritten byThushy SathiProduced byAnupam SharmaLisa DuffStarringTannishtha ChatterjeeBrett LeeSupriya PathakAkash KhuranaCinematographyMartin McGrathEdited byMarcus D'ArcyMusic bySalim–SulaimanAmanda BrownProductioncompanyFilms and Casting TEMPLE pty ltdRelease dates 7 October 2015 (2015-10-07) (Sydney premiere) 19 August 2016 (2016-08-19) (India premiere) CountryAustraliaLanguageEngli...

 

 

Pour les articles homonymes, voir Requiem (homonymie). Grande Messe des morts op. 5 (H 75) Requiem Première page du manuscrit autographe. Genre Requiem Nb. de mouvements 10 Musique Hector Berlioz Langue originale latin Effectif Ténor, chœur et orchestre Durée approximative 90 min Dates de composition 1837 Dédicataire Adrien de Gasparin Création 5 décembre 1837Paris, Église Saint-Louis-des-Invalides Interprètes François-Antoine Habeneck (dir.) modifier  Le Requiem, ou...

千葉県立犢橋高等学校 北緯35度40分42.8秒 東経140度7分12.6秒 / 北緯35.678556度 東経140.120167度 / 35.678556; 140.120167座標: 北緯35度40分42.8秒 東経140度7分12.6秒 / 北緯35.678556度 東経140.120167度 / 35.678556; 140.120167国公私立の別 公立学校設置者  千葉県学区 第1学区校訓 創造・諧和・自律設立年月日 1985年(昭和60年)4月10日共学・別学 男女共学課�...

 

 

Voce principale: Sport-Verein Werder von 1899 (femminile). Werder BremaStagione 2015-2016Sport calcio Squadra Werder Brema Allenatore Steffen Rau Presidente Hubertus Hess-Grunewald Frauen-Bundesliga11º (retrocesso) DFB-PokalQuarti di finale Maggiori presenzeCampionato: Eta, Schiechtl, Ulbrich (22)Totale: Eta, Schiechtl, Ulbrich (26) Miglior marcatoreCampionato: Sanders (3)Totale: Sanders (6) StadioWeserstadion - Platz 11 2014-2015 2016-2017 Si invita a seguire il modello di voce Questa...