Fixed-point property

A mathematical object X has the fixed-point property if every suitably well-behaved mapping from X to itself has a fixed point. The term is most commonly used to describe topological spaces on which every continuous mapping has a fixed point. But another use is in order theory, where a partially ordered set P is said to have the fixed point property if every increasing function on P has a fixed point.

Definition

Let A be an object in the concrete category C. Then A has the fixed-point property if every morphism (i.e., every function) has a fixed point.

The most common usage is when C = Top is the category of topological spaces. Then a topological space X has the fixed-point property if every continuous map has a fixed point.

Examples

Singletons

In the category of sets, the objects with the fixed-point property are precisely the singletons.

The closed interval

The closed interval [0,1] has the fixed point property: Let f: [0,1] → [0,1] be a continuous mapping. If f(0) = 0 or f(1) = 1, then our mapping has a fixed point at 0 or 1. If not, then f(0) > 0 and f(1) − 1 < 0. Thus the function g(x) = f(x) − x is a continuous real valued function which is positive at x = 0 and negative at x = 1. By the intermediate value theorem, there is some point x0 with g(x0) = 0, which is to say that f(x0) − x0 = 0, and so x0 is a fixed point.

The open interval does not have the fixed-point property. The mapping f(x) = x2 has no fixed point on the interval (0,1).

The closed disc

The closed interval is a special case of the closed disc, which in any finite dimension has the fixed-point property by the Brouwer fixed-point theorem.

Topology

A retract A of a space X with the fixed-point property also has the fixed-point property. This is because if is a retraction and is any continuous function, then the composition (where is inclusion) has a fixed point. That is, there is such that . Since we have that and therefore

A topological space has the fixed-point property if and only if its identity map is universal.

A product of spaces with the fixed-point property in general fails to have the fixed-point property even if one of the spaces is the closed real interval.

The FPP is a topological invariant, i.e. is preserved by any homeomorphism. The FPP is also preserved by any retraction.

According to the Brouwer fixed-point theorem, every compact and convex subset of a Euclidean space has the FPP. More generally, according to the Schauder-Tychonoff fixed point theorem every compact and convex subset of a locally convex topological vector space has the FPP. Compactness alone does not imply the FPP and convexity is not even a topological property so it makes sense to ask how to topologically characterize the FPP. In 1932 Borsuk asked whether compactness together with contractibility could be a sufficient condition for the FPP to hold. The problem was open for 20 years until the conjecture was disproved by Kinoshita who found an example of a compact contractible space without the FPP.[1]

References

  1. ^ Kinoshita, S. On Some Contractible Continua without Fixed Point Property. Fund. Math. 40 (1953), 96–98
  • Samuel Eilenberg, Norman Steenrod (1952). Foundations of Algebraic Topology. Princeton University Press.
  • Schröder, Bernd (2002). Ordered Sets. Birkhäuser Boston.

Read other articles:

Wikispecies mempunyai informasi mengenai Gelang biasa. Gelang biasa Klasifikasi ilmiah Kerajaan: Plantae Divisi: Angiospermae Kelas: Eudikotil Ordo: Caryophyllales Famili: Portulacaceae Genus: Portulaca Spesies: P. oleracea Nama binomial Portulaca oleraceaL. Sinonim Portulacaria oleracea Gelang biasa yang dimasak dalam Salad Yunani Gelang biasa (Portulaca oleracea), atau yang juga dikenal dengan nama Krokot Sayur, Krokot Pecel, Resereyan, dan Alur, adalah tumbuhan tahunan yang termasuk ...

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada November 2022. Ana MontesNama lahirAna Belén MontesKelahiran28 Februari 1957 (umur 67)Jerman BaratKebangsaanAmerika SerikatPekerjaanAnalis inteliejsni/Mata-mataAlma materUniversitas Virginia Universitas Johns Hopkins Ana Belén Montes[1] (lahir 28 Febr...

 

Comics character The HangmanThe Hangman (Robert Dickering version)Publication informationPublisherArchie ComicsDark Circle ComicsFirst appearanceRobert DickeringPep Comics #17 (1941)Steve DickeringThe Comet (vol. 1) #1 (1983)Eric AdamsThe Comet (vol. 2) #5 (1991)Michael MinettaThe Hangman (vol. 2) #1 (2015)Created byUnknown (script)Harry Lucey (art)In-story informationAlter egoRobert DickeringSteve DickeringEric AdamsMichael MinettaTeam affiliationsMighty CrusadersAbilities(Archie) Skilled fi...

Kue teteJajanan khas Indonesia berupa pancake dengan warna hijau lembut dan lembut di tengahnya yang dikelilingi crepes yang renyahNama lainSerabi Jakarta, cucur tipis, kue teteJenisKueSajianMakanan ringanTempat asalIndonesiaDaerahJakartaSuhu penyajianPanas, hangat atau suhu ruanganBahan utamaTepung beras, Tepung terigu, gula, pasta pandanSunting kotak info • L • BBantuan penggunaan templat ini  Media: Kue tete Serabi Jakarta Kue tete atau serabi Jakarta merupakan jajan...

 

القوات المسلحة المصريةمعهد اللغات للقوات المسلحة معهد اللغات للقوات المسلحة (مصر) تفاصيل الوكالة الحكومية البلد مصر  الاسم الكامل معهد اللغات للقوات المسلحة المصرية المركز القاهرة،  مصر الإدارة موقع الويب الموقع الإلكتروني تعديل مصدري - تعديل   معهد اللغات للقوا�...

 

Disain resmi simbol Euro Simbol euro (€) adalah simbol yang digunakan di mata uang euro. Simbol euro diinspirasi oleh huruf Yunani epsilon dan melambangkan huruf pertama dari kata Europe. Dua buah garis horisontal paralel melambangkan stabilitas euro.[1] Simbol tersebut dipublikasikan oleh Komisi Eropa pada 12 Desember 1996. Kode standar internasional untuk euro menurut ISO 4217 adalah EUR. Simbol khusus mata uang euro (€) juga kemudian dirancang. Setelah survey, simbol yang tadin...

Magnoliales Periode Aptium - Sekarang[1] PreЄ Є O S D C P T J K Pg N Magnoliales Magnolia wieseneriTaksonomiKerajaanPlantaeSubkerajaanViridiplantaeInfrakerajaanStreptophytaSuperdivisiEmbryophytaDivisiTracheophytaSubdivisiSpermatophytesKladAngiospermaeKladmagnoliidsOrdoMagnoliales Bercht. dan J.Presl, 1820 Tata namaSinonim taksonMyristicales (en)Eupomatiales (en)Degeneriales (en)Himantandrales (en) Ex taxon author (en)Juss. Famililihat teks.lbs Magnoliales adalah salah satu ordo tumb...

 

Outer, protective layer of a spacesuit Cross-section of layers in space suit construction An (Integrated) Thermal Micrometeoroid Garment (TMG or ITMG) is the outer layer of a space suit. The TMG has three functions: to insulate the suit occupant and prevent heat loss, to shield the occupant from harmful solar radiation, and to protect the astronaut from micrometeoroids and other orbital debris, which could puncture the suit and depressurize it. (This latter function is provided for spacecraft...

 

Pour un article plus général, voir Tour d'Italie 2021. 14e étape du Tour d'Italie 2021 GénéralitésCourse14e étape، Tour d'Italie 2021Type Étape de montagneDate22 mai 2021Distance205 kmPays ItalieLieu de départCittadellaLieu d'arrivéeMonte ZoncolanPartants161Arrivants159Vitesse moyenne38,756 km/hDénivelé3 700 mRésultats de l’étape1er Lorenzo Fortunato5 h 17 min 22 s(Eolo-Kometa)2e Jan Tratnik+ 26 s3e Alessandro Covi+ 59 sClassement général à l’issue de l’étape Eg...

House elections for the 17th U.S. Congress 1820–21 United States House of Representatives elections ← 1818 & 1819 July 3, 1820 – August 10, 1821 1822 & 1823 → All 187[a] seats in the United States House of Representatives94 seats needed for a majority   Majority party Minority party   Leader Philip P. Barbour Louis McLane Party Democratic-Republican Federalist Leader's seat Virginia 11th Delaware at-large Last election 16...

 

Rafe SpallSpall pada tahun 2011Lahir10 Maret 1983 (umur 41)Camberwell, London, InggrisPekerjaanAktorTahun aktif2001–sekarangSuami/istriElize du Toit ​(m. 2010)​Anak3Orang tuaTimothy SpallShane Spall Rafe Joseph Spall[1] (lahir 10 Maret 1983)[2] adalah seorang aktor Inggris. Spall telah muncul di film termasuk A Good Year (2006), One Day (2011), Anonymous (2011), Prometheus (2012), Life of Pi (2012), The Big Short (2015), The BFG (2016)...

 

Doel Square monument in Dhaka Doel Square (Bengali: দোয়েল চত্বর, Doel Chattar) is an area of the University of Dhaka campus located in Shahbag, Dhaka. There is a sculpture of two oriental magpie-robins in the middle of the area; the oriental magpie-robin is the national bird of Bangladesh and is locally known as the doyel or doel (Bengali: দোয়েল). The sculpture's architect is Azizul Jalil Pasha. The area serves as one of Bangladesh's most notable cultural h...

Economic phenomenon Part of a series onAutomation Automation in general Banking Building Home Highway system Laboratory Library Broadcast Mix Pool cleaner Pop music Reasoning Semi-automation Telephone Attendant Switchboard Teller machine Vehicular Vending machine Robotics and robots Domestic Vacuum cleaner Roomba Lawn mower Guided vehicle Industrial Paint ODD Impact of automation Manumation OOL Bias Self-driving cars Technological unemployment Jobless recovery Post-work society Threat Trade s...

 

Beemster adalah sebuah bekas gemeente dan polder di Belanda yang terletak di provinsi Holland Utara. Pada tahun 2021 daerah ini memiliki penduduk sebesar 10.401 jiwa. Beemster adalah bagian dari Purmerend mulai 1 Januari 2022. Artikel bertopik geografi atau tempat Belanda ini adalah sebuah rintisan. Anda dapat membantu Wikipedia dengan mengembangkannya.lbs

 

AmikoFilm posterNama lainJepangあみこ SutradaraYoko YamanakaProduserYoko YamanakaDitulis olehYoko YamanakaPenata musikShotaro OhoriSinematograferAsuka KatoYoko YamanakaPenyuntingYoko YamanakaTanggal rilis Februari 2018 (2018-02) (Berlin)[1] Amiko (Jepang: あみこ) adalah film drama kedewasaan Jepang. Film ini ditulis, disutradarai, dan diproduseri oleh Yoko Yamanaka. Pemeran Aira Sunohara sebagai Amiko Hiroro Oshita sebagai Aomi Maiko Mineo sebagai Kanako...

Le informazioni riportate non sono consigli medici e potrebbero non essere accurate. I contenuti hanno solo fine illustrativo e non sostituiscono il parere medico: leggi le avvertenze. AcromegaliaSoggetto acromegalico; l'eccessiva crescita delle ossa acrali è evidente in questo soggetto, in cui si evidenzia la protrusione di entrambe le arcate sopraccigliari e dei processi zigomatici, il caratteristico progenismo e il naso largo e carnoso.Specialitàendocrinologia Classificazione e risorse ...

 

Location of Boone County in West Virginia This is a list of the National Register of Historic Places listings in Boone County, West Virginia. This is intended to be a complete list of the properties and districts on the National Register of Historic Places in Boone County, West Virginia, United States. The locations of National Register properties and districts for which the latitude and longitude coordinates are included below, may be seen in a Google map.[1] There are 4 properties ...

 

International standard for automobile electronics This article relies excessively on references to primary sources. Please improve this article by adding secondary or tertiary sources. Find sources: ISO 16750 – news · newspapers · books · scholar · JSTOR (September 2020) (Learn how and when to remove this message) ISO 16750, Road vehicles – Environmental conditions and testing for electrical and electronic equipment, is a series of ISO standards whic...

Выборгский трамвай Описание Страна   Российская империя, Великое княжество Финляндское(1912—1917),  Российская республика (1917), Финляндская Республика (1918—1940, 1941—1944),  СССР (1940—1941, 1944—1957) Расположение Выборг Дата открытия 28 сентября 1912 Дата закрытия 1 апреля 1957 Экс...

 

American stock car racing team G2G RacingOwner(s)Tim ViensBill SheaPrincipal(s)Tim Silva (General Manager)BaseMooresville, North CarolinaSeriesNASCAR Craftsman Truck SeriesRace driversNASCAR Craftsman Truck Series:47. TBASponsorsNASCAR Craftsman Truck Series:47. TBAManufacturerToyotaFordOpened2021CareerDebutNASCAR Craftsman Truck Series:2022 NextEra Energy 250 (Daytona)Latest raceNASCAR Craftsman Truck Series:2023 Baptist Health Cancer Care 200 (Homstead Miami)Races competed27Drivers' Champio...