Lefschetz fixed-point theorem

In mathematics, the Lefschetz fixed-point theorem is a formula that counts the fixed points of a continuous mapping from a compact topological space to itself by means of traces of the induced mappings on the homology groups of . It is named after Solomon Lefschetz, who first stated it in 1926.

The counting is subject to an imputed multiplicity at a fixed point called the fixed-point index. A weak version of the theorem is enough to show that a mapping without any fixed point must have rather special topological properties (like a rotation of a circle).

Formal statement

For a formal statement of the theorem, let

be a continuous map from a compact triangulable space to itself. Define the Lefschetz number of by

the alternating (finite) sum of the matrix traces of the linear maps induced by on , the singular homology groups of with rational coefficients.

A simple version of the Lefschetz fixed-point theorem states: if

then has at least one fixed point, i.e., there exists at least one in such that . In fact, since the Lefschetz number has been defined at the homology level, the conclusion can be extended to say that any map homotopic to has a fixed point as well.

Note however that the converse is not true in general: may be zero even if has fixed points, as is the case for the identity map on odd-dimensional spheres.

Sketch of a proof

First, by applying the simplicial approximation theorem, one shows that if has no fixed points, then (possibly after subdividing ) is homotopic to a fixed-point-free simplicial map (i.e., it sends each simplex to a different simplex). This means that the diagonal values of the matrices of the linear maps induced on the simplicial chain complex of must be all be zero. Then one notes that, in general, the Lefschetz number can also be computed using the alternating sum of the matrix traces of the aforementioned linear maps (this is true for almost exactly the same reason that the Euler characteristic has a definition in terms of homology groups; see below for the relation to the Euler characteristic). In the particular case of a fixed-point-free simplicial map, all of the diagonal values are zero, and thus the traces are all zero.

Lefschetz–Hopf theorem

A stronger form of the theorem, also known as the Lefschetz–Hopf theorem, states that, if has only finitely many fixed points, then

where is the set of fixed points of , and denotes the index of the fixed point .[1] From this theorem one deduces the Poincaré–Hopf theorem for vector fields, since every vector field on compact differential manifold induce flow in a natural way. For every is continuous mapping homotopic to identity (thus have same Lefschetz number) and for small indices of fixed points equals to indices of zeroes of vector field.

Relation to the Euler characteristic

The Lefschetz number of the identity map on a finite CW complex can be easily computed by realizing that each can be thought of as an identity matrix, and so each trace term is simply the dimension of the appropriate homology group. Thus the Lefschetz number of the identity map is equal to the alternating sum of the Betti numbers of the space, which in turn is equal to the Euler characteristic . Thus we have

Relation to the Brouwer fixed-point theorem

The Lefschetz fixed-point theorem generalizes the Brouwer fixed-point theorem, which states that every continuous map from the -dimensional closed unit disk to must have at least one fixed point.

This can be seen as follows: is compact and triangulable, all its homology groups except are zero, and every continuous map induces the identity map , whose trace is one; all this together implies that is non-zero for any continuous map .

Historical context

Lefschetz presented his fixed-point theorem in (Lefschetz 1926). Lefschetz's focus was not on fixed points of maps, but rather on what are now called coincidence points of maps.

Given two maps and from an orientable manifold to an orientable manifold of the same dimension, the Lefschetz coincidence number of and is defined as

where is as above, is the homomorphism induced by on the cohomology groups with rational coefficients, and and are the Poincaré duality isomorphisms for and , respectively.

Lefschetz proved that if the coincidence number is nonzero, then and have a coincidence point. He noted in his paper that letting and letting be the identity map gives a simpler result, which we now know as the fixed-point theorem.

Frobenius

Let be a variety defined over the finite field with elements and let be the base change of to the algebraic closure of . The Frobenius endomorphism of (often the geometric Frobenius, or just the Frobenius), denoted by , maps a point with coordinates to the point with coordinates . Thus the fixed points of are exactly the points of with coordinates in ; the set of such points is denoted by . The Lefschetz trace formula holds in this context, and reads:

This formula involves the trace of the Frobenius on the étale cohomology, with compact supports, of with values in the field of -adic numbers, where is a prime coprime to .

If is smooth and equidimensional, this formula can be rewritten in terms of the arithmetic Frobenius , which acts as the inverse of on cohomology:

This formula involves usual cohomology, rather than cohomology with compact supports.

The Lefschetz trace formula can also be generalized to algebraic stacks over finite fields.

See also

Notes

  1. ^ Dold, Albrecht (1980). Lectures on algebraic topology. Vol. 200 (2nd ed.). Berlin, New York: Springer-Verlag. ISBN 978-3-540-10369-1. MR 0606196., Proposition VII.6.6.

References

Read other articles:

Sky HighSutradaraMike MitchellProduserAndrew GunnDitulis olehPaul Hernandez,Robert Schooley,Mark McCorklePemeranMichael Angarano,Kurt Russell,Kelly PrestonPenata musikMichael GiacchinoSinematograferShelly JohnsonPenyuntingPeter AmundsonDistributorDisney PicturesTanggal rilis29 Juli 2005Durasi102 menitAnggaran~ US$ 35.000.000IMDbInformasi di IMDb Sky High adalah sebuah film produksi Disney Pictures pada tahun 2005. Di Amerika Serikat, film ini dirilis pada 29 Juli dan pada 8 September di...

 

Hi! PARISHi! PARISIndustriKecerdasan buatanDidirikan15 September 2020; 3 tahun lalu (2020-09-15)PendiriHEC ParisInstitut Politeknik ParisKantorpusatPalaiseau, PrancisTokohkunciRaphaëlle Gautier (CEO)Situs webwww.hi-paris.fr Hi! PARIS adalah organisasi berbasis di Paris yang mempromosikan pendidikan, penelitian, dan inovasi[1] di bidang kecerdasan buatan (AI) dan analitik data[2]. Hi PARIS! pekerjaan meliputi penelitian dalam keamanan AI teknis dan etika AI[3], ad...

 

Cari artikel bahasa  Cari berdasarkan kode ISO 639 (Uji coba)  Kolom pencarian ini hanya didukung oleh beberapa antarmuka Halaman bahasa acak Bahasa KangeanBPS: 0092 6 Bhânta KangèyanBhânta KangayanOca' KangèyanOca' Kangayan Pengucapan/kʌŋɛʌn/Dituturkan diIndonesiaWilayahKepulauan KangeanEtnisKangeanPenutur128.000 (2010)[1]~130.100[a] Rumpun bahasa Austronesia Melayu-Polinesia Melayu-Sumbawa (?) Madura-Kangean Bahasa Kangean Bentuk bakuKangean BakuD...

  لمعانٍ أخرى، طالع وزارة التعليم العالي (توضيح). جمهورية مصر العربيةوزارة التعليم العالي والبحث العلمي وزارة التعليم العالي والبحث العلمي (مصر)الشعار البلد  مصر المقر الرئيسي العاصمة الإدارية، محافظة القاهرة تاريخ التأسيس 1961 (منذ 63 سنة) النوع وزارة العضوية مجلس ال...

 

Silvana Grasso Silvana Grasso (Macchia di Giarre, 3 giugno 1952) è una scrittrice italiana. Indice 1 Biografia 2 Opere 2.1 Racconti in volume 2.2 Romanzi 2.3 Poesia 2.4 Teatro 2.5 Traduzioni 3 Riconoscimenti 4 Note 5 Bibliografia 6 Altri progetti 7 Collegamenti esterni Biografia Nata a Macchia di Giarre, dove risiede, è filologa, scrittrice e critica per Tuttolibri, La Sicilia e la Repubblica (edizione di Palermo). I suoi libri sono stati tradotti in inglese, greco, tedesco, olandese; mentr...

 

DaimosDaimosPembuatTadao NagahamaDitulis olehSaburo YatsudePemeranAkira KamiyaMiyuki UedaHisashi KatsudaKazuyuki SogabeYoko KuriPenggubah lagu temaShunsuke KikuchiLagu pembukaTate! Toushou Daimos oleh Isao Sasaki dan Columbia Yurikago-KaiLagu penutupErika no Ballade oleh Kumiko Kaori dan Masatake OkuraPenata musikShunsuke KikuchiNegara asal JepangJmlh. episode44ProduksiDurasi30 menit per episodeRumah produksiSunrise, Toei AnimationRilis asliJaringan TV AsahiToei MBS-4 (1982-83)ABS-CBN ...

Diagramme de la classification de Hubble, sous sa forme habituelle de diapason. Il est aussi nommé « fourchette de Hubble ». En astronomie, la séquence de Hubble est une classification des types de galaxies reposant sur des critères morphologiques. Elle est développée en 1936 par Edwin Hubble. La classification E : Elliptique Article détaillé : Galaxie elliptique. La galaxie elliptique géante ESO 325-G004. À gauche du schéma classique représentant la séquence...

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Army General Staff plot – news · newspapers · books · scholar · JSTOR (January 2021) (Learn how and when to remove this template message) Army General Staff plotDateOctober 1, 1948LocationBangkok, ThailandResult Coup failedBelligerents Thai government Royal Tha...

 

イスラームにおける結婚(イスラームにおけるけっこん)とは、二者の間で行われる法的な契約である。新郎新婦は自身の自由な意思で結婚に同意する。口頭または紙面での規則に従った拘束的な契約は、イスラームの結婚で不可欠だと考えられており、新郎と新婦の権利と責任の概要を示している[1]。イスラームにおける離婚は様々な形をとることができ、個...

Book by Sigmund Freud Civilization and Its Discontents 1930s title page German editionAuthorSigmund FreudOriginal titleDas Unbehagen in der KulturTranslatorJoan Riviere James StracheyCountryAustriaLanguageGermanSubjectPhilosophy of culture, social psychology, political philosophyPublisherInternationaler Psychoanalytischer Verlag WienPublication date1930Media typePrintPages127ISBN978-0-393-30158-8Preceded byThe Future of an Illusion Followed byMoses and Monotheism ...

 

Urban park in Miami, Florida For other areas of the same name, see Bayfront Park (disambiguation). Bayfront ParkBayfront Park and Plaza in February 2020, with the Ferris Wheel under constructionTypeMunicipalLocationDowntown, Miami, Florida, United StatesCoordinates25°46′30″N 80°11′10″W / 25.775°N 80.186°W / 25.775; -80.186Area32 acres (13 ha)Created1925Operated byBayfront Park Management TrustStatusCompletedPublic transit accessBayfront Park (Metr...

 

District in Dublin, Ireland Georgian mileA view down the length of the Georgian mile in 1993. The terminating vista is Holles Street Hospital. The gas cylinder behind it was demolished in the mid-'90sShown within Central DublinLocationDublin, IrelandCoordinates53°20′14″N 6°14′56″W / 53.3371439°N 6.2488052°W / 53.3371439; -6.2488052 The Georgian mile is an unofficial term used to describe a continuous, near mile-long thoroughfare largely lined with Georgian ...

2002 studio album by the StreetsOriginal Pirate MaterialStudio album by the StreetsReleased25 March 2002Recorded2001–2002StudioMike Skinner's house, Brixton, LondonGenreAlternative hip hopelectronicaUK garage2-step garageLength47:24LabelLocked On679ProducerMike SkinnerThe Streets chronology Original Pirate Material(2002) All Got Our Runnins(2003) Singles from Original Pirate Material Has It Come to This?Released: 8 October 2001 Let's Push Things ForwardReleased: 15 April 2002 Weak ...

 

Ministerio de Culturas y Turismo LocalizaciónPaís BoliviaInformación generalJurisdicción BoliviaTipo ministerio de CulturaSede La PazOrganizaciónDependencias Viceministerio de Interculturalidad Viceministerio de Turismo Viceministerio de DescolonizaciónHistoriaFundación 7 de febrero de 2009Disolución 4 de junio de 2020 (11 años)Sucesión Ministerio de Culturas y Turismo→ Ministerio de Culturas, Descolonización y Despatriarcalización Sitio web oficial[editar datos en Wik...

 

South Korean reality show Hot SingersPromotional posterHangul뜨거운 씽어즈 GenreMusic showReality showDirected byShin Young-gwangStarringVarious artistsCountry of originSouth KoreaOriginal languageKoreanNo. of seasons1No. of episodes11ProductionExecutive producerKim Eun-jungProducerShin Young-gwangCamera setupMulti-cameraOriginal releaseNetworkJTBCReleaseMarch 14 (2022-03-14) –May 30, 2022 (2022-05-30) Hot Singers (Korean: 뜨거운 씽어즈; RR: ...

Island in San Francisco Bay, California This article is about the island. For the city on the island, see Alameda, California. This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Alameda island – news · newspapers · books · scholar · JSTOR (May 2013) (Learn how and when to remove this message) Alameda Islan...

 

American professional wrestler and actress Nyla RoseRose in February 2020Born (1982-08-03) August 3, 1982 (age 41)[1][2]Washington, D.C., U.S.Professional wrestling careerRing name(s)Debbie Kong[3]Nyla RoseNyla The DestroyerBilled height5 ft 7 in (170 cm)[4]Billed weight185 lb (84 kg)[4]Billed fromWashington, D.C.[5]Trained byJames Zaveski[6] Nyla Rose (born August 3, 1982) is an American professional wrestl...

 

آيسلندا في الحرب العالمية الثانيةمعلومات عامةالمنطقة آيسلندا التأثيراتأحد جوانب آيسلندا — الحرب العالمية الثانية فرع من تاريخ آيسلندا تعديل - تعديل مصدري - تعديل ويكي بيانات الأهداف البريطانية المبدئية خلال عملية غزو آيسلندا عام 1940. تدريب القوات الآيسلندية عام 1940. كانت ...

Town in Pskov Oblast, Russia This article uses bare URLs, which are uninformative and vulnerable to link rot. Please consider converting them to full citations to ensure the article remains verifiable and maintains a consistent citation style. Several templates and tools are available to assist in formatting, such as reFill (documentation) and Citation bot (documentation). (September 2022) (Learn how and when to remove this message) Town in Pskov Oblast, RussiaOpochka ОпочкаTown[1&#...

 

مصطفى السباعي معلومات شخصية الميلاد 1915مدينة حمص بسوريا الوفاة 3 أكتوبر 1964سوريا سبب الوفاة مرض  الجنسية سوري مناصب المراقب العام لجماعة الإخوان المسلمين في سوريا (1 )   في المنصب1945  – 1964    عصام العطار  الحياة العملية المدرسة الأم جامعة الأزهر  التلامذة ا...