Klein polyhedron

In the geometry of numbers, the Klein polyhedron, named after Felix Klein, is used to generalize the concept of simple continued fractions to higher dimensions.

Definition

Let be a closed simplicial cone in Euclidean space . The Klein polyhedron of is the convex hull of the non-zero points of .

Relation to continued fractions

The Klein continued fraction for (Golden Ratio) with the Klein polyhedra encoding the odd terms in blue and the Klein polyhedra encoding the even terms in red.

Suppose is an irrational number. In , the cones generated by and by give rise to two Klein polyhedra, each of which is bounded by a sequence of adjoining line segments. Define the integer length of a line segment to be one less than the size of its intersection with Then the integer lengths of the edges of these two Klein polyhedra encode the continued-fraction expansion of , one matching the even terms and the other matching the odd terms.

Graphs associated with the Klein polyhedron

Suppose is generated by a basis of (so that ), and let be the dual basis (so that ). Write for the line generated by the vector , and for the hyperplane orthogonal to .

Call the vector irrational if ; and call the cone irrational if all the vectors and are irrational.

The boundary of a Klein polyhedron is called a sail. Associated with the sail of an irrational cone are two graphs:

  • the graph whose vertices are vertices of , two vertices being joined if they are endpoints of a (one-dimensional) edge of ;
  • the graph whose vertices are -dimensional faces (chambers) of , two chambers being joined if they share an -dimensional face.

Both of these graphs are structurally related to the directed graph whose set of vertices is , where vertex is joined to vertex if and only if is of the form where

(with , ) and is a permutation matrix. Assuming that has been triangulated, the vertices of each of the graphs and can be described in terms of the graph :

  • Given any path in , one can find a path in such that , where is the vector .
  • Given any path in , one can find a path in such that , where is the -dimensional standard simplex in .

Generalization of Lagrange's theorem

Lagrange proved that for an irrational real number , the continued-fraction expansion of is periodic if and only if is a quadratic irrational. Klein polyhedra allow us to generalize this result.

Let be a totally real algebraic number field of degree , and let be the real embeddings of . The simplicial cone is said to be split over if where is a basis for over .

Given a path in , let . The path is called periodic, with period , if for all . The period matrix of such a path is defined to be . A path in or associated with such a path is also said to be periodic, with the same period matrix.

The generalized Lagrange theorem states that for an irrational simplicial cone , with generators and as above and with sail , the following three conditions are equivalent:

  • is split over some totally real algebraic number field of degree .
  • For each of the there is periodic path of vertices in such that the asymptotically approach the line ; and the period matrices of these paths all commute.
  • For each of the there is periodic path of chambers in such that the asymptotically approach the hyperplane ; and the period matrices of these paths all commute.

Example

Take and . Then the simplicial cone is split over . The vertices of the sail are the points corresponding to the even convergents of the continued fraction for . The path of vertices in the positive quadrant starting at and proceeding in a positive direction is . Let be the line segment joining to . Write and for the reflections of and in the -axis. Let , so that , and let .

Let , , , and .

  • The paths and are periodic (with period one) in , with period matrices and . We have and .
  • The paths and are periodic (with period one) in , with period matrices and . We have and .

Generalization of approximability

A real number is called badly approximable if is bounded away from zero. An irrational number is badly approximable if and only if the partial quotients of its continued fraction are bounded.[1] This fact admits of a generalization in terms of Klein polyhedra.

Given a simplicial cone in , where , define the norm minimum of as .

Given vectors , let . This is the Euclidean volume of .

Let be the sail of an irrational simplicial cone .

  • For a vertex of , define where are primitive vectors in generating the edges emanating from .
  • For a vertex of , define where are the extreme points of .

Then if and only if and are both bounded.

The quantities and are called determinants. In two dimensions, with the cone generated by , they are just the partial quotients of the continued fraction of .

See also

References

  1. ^ Bugeaud, Yann (2012). Distribution modulo one and Diophantine approximation. Cambridge Tracts in Mathematics. Vol. 193. Cambridge: Cambridge University Press. p. 245. ISBN 978-0-521-11169-0. Zbl 1260.11001.
  • O. N. German, 2007, "Klein polyhedra and lattices with positive norm minima". Journal de théorie des nombres de Bordeaux 19: 175–190.
  • E. I. Korkina, 1995, "Two-dimensional continued fractions. The simplest examples". Proc. Steklov Institute of Mathematics 209: 124–144.
  • G. Lachaud, 1998, "Sails and Klein polyhedra" in Contemporary Mathematics 210. American Mathematical Society: 373–385.

Read other articles:

KumendungDesaKantor Desa KumendungPeta lokasi Desa KumendungNegara IndonesiaProvinsiJawa TimurKabupatenBanyuwangiKecamatanMuncarKode pos68472Kode Kemendagri35.10.05.2010 Luas5.37 km2Jumlah penduduk6,305 jiwaKepadatan1,174.12 jiwa/km2 Kumendung adalah sebuah desa di Kecamatan Muncar, Kabupaten Banyuwangi, Jawa Timur, Indonesia, yang sebelumnya termasuk dalam administratif Desa Sumbersewu dan kemudian mengalami pemekaran desa. Pembagian wilayah Desa ini terdiri dari 2 dusun, yaitu: Dusun K...

 

Voce principale: Football Club Matera. Matera SportStagione 1991-1992Sport calcio Squadra Matera Allenatore Marcello Pasquino Presidente Mario Salerno Serie C2, gir .C5º Maggiori presenzeCampionato: Gigliotti (37) Miglior marcatoreCampionato: Ferrante (8) 1990-1991 1992-1993 Si invita a seguire il modello di voce Questa voce raccoglie le informazioni riguardanti il Matera Sport nelle competizioni ufficiali della stagione 1991-1992. Indice 1 Rosa 2 Risultati 2.1 Serie C2 2.1.1 Girone di...

 

追晉陸軍二級上將趙家驤將軍个人资料出生1910年 大清河南省衛輝府汲縣逝世1958年8月23日(1958歲—08—23)(47—48歲) † 中華民國福建省金門縣国籍 中華民國政党 中國國民黨获奖 青天白日勳章(追贈)军事背景效忠 中華民國服役 國民革命軍 中華民國陸軍服役时间1924年-1958年军衔 二級上將 (追晉)部队四十七師指挥東北剿匪總司令部參謀長陸軍�...

В статье не хватает ссылок на источники (см. рекомендации по поиску). Информация должна быть проверяема, иначе она может быть удалена. Вы можете отредактировать статью, добавив ссылки на авторитетные источники в виде сносок. (21 февраля 2017) Ниже представлен список глав Укра...

 

Chemical JWH-161Identifiers IUPAC name (4aR,13bR)-2,5,5-trimethyl-8-pentyl-3,4,4a,5,8,13b-hexahydroisochromeno[3,4-b]carbazol-13-ol PubChem CID10431286ChemSpider8606713Chemical and physical dataFormulaC27H33NO2Molar mass403.566 g·mol−13D model (JSmol)Interactive image SMILES Oc3c5c1ccccc1n(c5cc2OC([C@@H]4CC/C(=C\[C@H]4c23)C)(C)C)CCCCC InChI InChI=1S/C27H33NO2/c1-5-6-9-14-28-21-11-8-7-10-18(21)24-22(28)16-23-25(26(24)29)19-15-17(2)12-13-20(19)27(3,4)30-23/h7-8,10-11,15-16,19-20,29H,5-6...

 

Questo è un elenco di sovrani che hanno regnato con il titolo di conte prima solo sulla Frisia Occidentale, poi estendendo il dominio anche sul Kennemerland e poi su tutta l'Olanda. Dalla metà del IX secolo, col capostipite della Casa d'Olanda, Gerulfo I di Frisia e fino al 1247 con Guglielmo II d'Olanda i sovrani hanno regnato in forma esclusiva la Contea della Frisia Occidentale e, successivamente, la Contea d'Olanda. Dal 1247 il titolo di Conte d'Olanda ha cominciato a sommarsi, attraver...

Untuk pengertian lain, lihat Tellumpoccoe (disambiguasi). Koordinat: 5°02′17″S 119°31′07″E / 5.0380814°S 119.5185582°E / -5.0380814; 119.5185582 TellumpoccoeᨈᨛᨒᨘᨇᨚᨌᨚᨓᨙᨈᨒᨘᨅᨚᨌᨚᨕDesaKantor Desa Tellumpoccoe di Jl. Poros PalisiNegara IndonesiaProvinsiSulawesi SelatanKabupatenMarosKecamatanMarusuKode pos90551[1]Kode Kemendagri73.09.08.2003 Luas6,79 km² tahun 2017Jumlah penduduk2.974 jiwa tahun 2017Kepadatan438,00...

 

Swiss association Protestant Church in SwitzerlandClassificationProtestantOrientationReformedMethodistPolityA Communion of 25 regional and denominational churches that practice their own forms of church governance.AssociationsWorld Communion of Reformed ChurchesWorld Council of ChurchesConference of Churches on the RhineCommunity of Protestant Churches in EuropeRegionSwitzerlandHeadquartersBern, SwitzerlandOrigin1920[1] OltenCongregations982Members1.92 million (2022)[2]Officia...

 

Pour les articles homonymes, voir Foster. Jodie Foster Jodie Foster en 2011. Données clés Nom de naissance Alicia Christian Foster Surnom Jodi Foster / Jody Foster Naissance 19 novembre 1962 (61 ans)Los Angeles, Californie (États-Unis) Nationalité Américaine Profession ActriceRéalisatriceProductrice Films notables Taxi DriverContactLes AccusésLe Silence des agneauxPanic Room Séries notables True Detective modifier Alicia Christian Foster, dite Jodie Foster (en anglais : ...

Railway station in Kent, England KemsingGeneral informationLocationKemsing, SevenoaksEnglandGrid referenceTQ567577Managed bySoutheasternPlatforms2Other informationStation codeKMSClassificationDfT category F2HistoryOpened1 June 1874Original companyLondon, Chatham and Dover RailwayPre-groupingSouth Eastern and Chatham RailwayPost-groupingSouthern RailwayPassengers2018/19 22,4762019/20 19,2762020/21 3,1222021/22 9,4782022/23 12,150 NotesPassenger statistics from the Office of Rail and Road Kemsi...

 

For other uses, see Agia Paraskevi (disambiguation). Municipality in GreeceAgia Paraskevi Αγία ΠαρασκευήMunicipalityAgia ParaskeviLocation within the region Coordinates: 38°0.7′N 23°49.2′E / 38.0117°N 23.8200°E / 38.0117; 23.8200CountryGreeceAdministrative regionAtticaRegional unitNorth AthensGovernment • MayorIoannis Mylonakis[1] (since 2023)Area • Municipality7.935 km2 (3.064 sq mi)Elevation206 ...

 

Kementerian Ilmu Pengetahuan dan Teknologi Republik Korea과학기술정보통신부Gwahak Gisul Jeongbo TongsinbuInformasi lembagaDibentuk26 Juli 2017 (2017-07-26)Nomenklatur lembaga sebelumnyaKementerian Ilmu Pengetahuan, Teknologi, dan Perencanaan Masa DepanWilayah hukumPemerintah Korea SelatanKantor pusatGwacheon, Gyeonggi-doPegawai816[1]MenteriYu Yeong-min, Menteri Ilmu Pengetahuan dan TeknologiWakil MenteriYi Jin-gyu, Wakil Menteri pertamaKim Yong-su, Wakil Menteri keduaLem...

American musician Vess OssmanBackground informationBirth nameSylvester Louis OssmanBorn(1868-08-21)August 21, 1868Hudson, New York, U.S.DiedDecember 7, 1923(1923-12-07) (aged 55)Fairmont, MinnesotaGenres Pop ragtime dance band Occupation(s)MusicianInstrument(s)BanjoYears active1893–1923LabelsColumbia, Vim The Buffalo Rag Written by Tom Turpin (1904), performed by Ossman in 1906 Musical artist Sylvester Louis Vess Ossman (August 21, 1868 – December 7, 1923) was a leading five-stri...

 

Dick AdvocaatAdvocaat alla guida della nazionale russa nel 2011Nazionalità Paesi Bassi Altezza170 cm Peso80 kg Calcio RuoloAllenatore (ex centrocampista) Squadra Curaçao Termine carriera1º luglio 1984 - giocatore CarrieraSquadre di club1 1965-1967 ADO Den Haag[1]2 (0)1967→  S.F. Gales7 (1)[2]1967-1973 Den Haag159 (7)1973-1977 Roda JC121 (2)1977-1979 VVV-Venlo74 (6)1979 Chicago Sting32 (3)1979-1980 Den Haag11 (1)1980 Chicago Sti...

 

Ugandan water company National Water and Sewerage CorporationCompany typePublic utilityIndustryWaterFounded1972; 52 years ago (1972)Headquarters3 Nakasero Road, Kampala, UgandaKey peopleBadru KiggunduChairman[1]Silver MugishaManaging Director and CEO[2]ServicesWater Supply and SanitationNumber of employees2,860 (2016)[3]ParentGovernment of UgandaWebsitewww.nwsc.co.ug The National Water and Sewerage Corporation (NWSC) is a water supply and sanitation c...

「白山」のその他の用法については「白山 (曖昧さ回避)」をご覧ください。 白山 大汝峰から望む白山(剣ヶ峰と御前峰)と火口湖標高 2,702.14[1] m所在地 日本石川県白山市岐阜県大野郡白川村位置 北緯36度09分18秒 東経136度46分17秒 / 北緯36.15500度 東経136.77139度 / 36.15500; 136.77139座標: 北緯36度09分18秒 東経136度46分17秒 / 北緯36.15500度 東経...

 

Global framework for capital flows Global finance redirects here. For magazine, see Global Finance (magazine). Chart of the world's gross domestic product over the last two millennia The global financial system is the worldwide framework of legal agreements, institutions, and both formal and informal economic action that together facilitate international flows of financial capital for purposes of investment and trade financing. Since emerging in the late 19th century during the first modern w...

 

هذه المقالة تحتاج للمزيد من الوصلات للمقالات الأخرى للمساعدة في ترابط مقالات الموسوعة. فضلًا ساعد في تحسين هذه المقالة بإضافة وصلات إلى المقالات المتعلقة بها الموجودة في النص الحالي. (سبتمبر 2021) هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة...

オレクサンドル・シルスキーОлександр Станіславович Сирський 生誕 (1965-07-26) 1965年7月26日(59歳)ソビエト連邦ロシア、ヴラジーミル州所属組織 ウクライナ陸軍元ソビエト連邦軍最終階級 上級大将(現大将)[注釈 1]テンプレートを表示 オレクサンドル・スタニスラーヴォヴィチ・シルスキー(ウクライナ語: Олекса́ндр Станісла́вович �...

 

Grand Inquisitor of Spain (1420–1498) Tomás de TorquemadaOPTorquemada, unknown artist, 19th centuryGrand InquisitorIn office1483 – 16 September 1498Preceded byPosition establishedSucceeded byDiego de Deza Personal detailsBorn14 October 1420Torquemada or Valladolid, Kingdom of CastileDied16 September 1498(1498-09-16) (aged 77)Ávila, Kingdom of CastileRelativesJuan de Torquemada (uncle)Alma materUniversity of SalamancaOccupationFriar Tomás de Torquemada[a] OP (14 Oc...