Conformal map

A rectangular grid (top) and its image under a conformal map (bottom). It is seen that maps pairs of lines intersecting at 90° to pairs of curves still intersecting at 90°.

In mathematics, a conformal map is a function that locally preserves angles, but not necessarily lengths.

More formally, let and be open subsets of . A function is called conformal (or angle-preserving) at a point if it preserves angles between directed curves through , as well as preserving orientation. Conformal maps preserve both angles and the shapes of infinitesimally small figures, but not necessarily their size or curvature.

The conformal property may be described in terms of the Jacobian derivative matrix of a coordinate transformation. The transformation is conformal whenever the Jacobian at each point is a positive scalar times a rotation matrix (orthogonal with determinant one). Some authors define conformality to include orientation-reversing mappings whose Jacobians can be written as any scalar times any orthogonal matrix.[1]

For mappings in two dimensions, the (orientation-preserving) conformal mappings are precisely the locally invertible complex analytic functions. In three and higher dimensions, Liouville's theorem sharply limits the conformal mappings to a few types.

The notion of conformality generalizes in a natural way to maps between Riemannian or semi-Riemannian manifolds.

In two dimensions

If is an open subset of the complex plane , then a function is conformal if and only if it is holomorphic and its derivative is everywhere non-zero on . If is antiholomorphic (conjugate to a holomorphic function), it preserves angles but reverses their orientation.

In the literature, there is another definition of conformal: a mapping which is one-to-one and holomorphic on an open set in the plane. The open mapping theorem forces the inverse function (defined on the image of ) to be holomorphic. Thus, under this definition, a map is conformal if and only if it is biholomorphic. The two definitions for conformal maps are not equivalent. Being one-to-one and holomorphic implies having a non-zero derivative. In fact, we have the following relation, the inverse function theorem:

where . However, the exponential function is a holomorphic function with a nonzero derivative, but is not one-to-one since it is periodic.[2]

The Riemann mapping theorem, one of the profound results of complex analysis, states that any non-empty open simply connected proper subset of admits a bijective conformal map to the open unit disk in . Informally, this means that any blob can be transformed into a perfect circle by some conformal map.

Global conformal maps on the Riemann sphere

A map of the Riemann sphere onto itself is conformal if and only if it is a Möbius transformation.

The complex conjugate of a Möbius transformation preserves angles, but reverses the orientation. For example, circle inversions.

Conformality with respect to three types of angles

In plane geometry there are three types of angles that may be preserved in a conformal map.[3] Each is hosted by its own real algebra, ordinary complex numbers, split-complex numbers, and dual numbers. The conformal maps are described by linear fractional transformations in each case.[4]

In three or more dimensions

Riemannian geometry

In Riemannian geometry, two Riemannian metrics and on a smooth manifold are called conformally equivalent if for some positive function on . The function is called the conformal factor.

A diffeomorphism between two Riemannian manifolds is called a conformal map if the pulled back metric is conformally equivalent to the original one. For example, stereographic projection of a sphere onto the plane augmented with a point at infinity is a conformal map.

One can also define a conformal structure on a smooth manifold, as a class of conformally equivalent Riemannian metrics.

Euclidean space

A classical theorem of Joseph Liouville shows that there are far fewer conformal maps in higher dimensions than in two dimensions. Any conformal map from an open subset of Euclidean space into the same Euclidean space of dimension three or greater can be composed from three types of transformations: a homothety, an isometry, and a special conformal transformation. For linear transformations, a conformal map may only be composed of homothety and isometry, and is called a conformal linear transformation.

Applications

Applications of conformal mapping exist in aerospace engineering,[5] in biomedical sciences[6] (including brain mapping[7] and genetic mapping[8][9][10]), in applied math (for geodesics[11] and in geometry[12]), in earth sciences (including geophysics,[13] geography,[14] and cartography),[15] in engineering,[16][17] and in electronics.[18]

Cartography

In cartography, several named map projections, including the Mercator projection and the stereographic projection are conformal. The preservation of compass directions makes them useful in marine navigation.

Physics and engineering

Conformal mappings are invaluable for solving problems in engineering and physics that can be expressed in terms of functions of a complex variable yet exhibit inconvenient geometries. By choosing an appropriate mapping, the analyst can transform the inconvenient geometry into a much more convenient one. For example, one may wish to calculate the electric field, , arising from a point charge located near the corner of two conducting planes separated by a certain angle (where is the complex coordinate of a point in 2-space). This problem per se is quite clumsy to solve in closed form. However, by employing a very simple conformal mapping, the inconvenient angle is mapped to one of precisely radians, meaning that the corner of two planes is transformed to a straight line. In this new domain, the problem (that of calculating the electric field impressed by a point charge located near a conducting wall) is quite easy to solve. The solution is obtained in this domain, , and then mapped back to the original domain by noting that was obtained as a function (viz., the composition of and ) of , whence can be viewed as , which is a function of , the original coordinate basis. Note that this application is not a contradiction to the fact that conformal mappings preserve angles, they do so only for points in the interior of their domain, and not at the boundary. Another example is the application of conformal mapping technique for solving the boundary value problem of liquid sloshing in tanks.[19]

If a function is harmonic (that is, it satisfies Laplace's equation ) over a plane domain (which is two-dimensional), and is transformed via a conformal map to another plane domain, the transformation is also harmonic. For this reason, any function which is defined by a potential can be transformed by a conformal map and still remain governed by a potential. Examples in physics of equations defined by a potential include the electromagnetic field, the gravitational field, and, in fluid dynamics, potential flow, which is an approximation to fluid flow assuming constant density, zero viscosity, and irrotational flow. One example of a fluid dynamic application of a conformal map is the Joukowsky transform that can be used to examine the field of flow around a Joukowsky airfoil.

Conformal maps are also valuable in solving nonlinear partial differential equations in some specific geometries. Such analytic solutions provide a useful check on the accuracy of numerical simulations of the governing equation. For example, in the case of very viscous free-surface flow around a semi-infinite wall, the domain can be mapped to a half-plane in which the solution is one-dimensional and straightforward to calculate.[20]

For discrete systems, Noury and Yang presented a way to convert discrete systems root locus into continuous root locus through a well-know conformal mapping in geometry (aka inversion mapping).[21]

Maxwell's equations

Maxwell's equations are preserved by Lorentz transformations which form a group including circular and hyperbolic rotations. The latter are sometimes called Lorentz boosts to distinguish them from circular rotations. All these transformations are conformal since hyperbolic rotations preserve hyperbolic angle, (called rapidity) and the other rotations preserve circular angle. The introduction of translations in the Poincaré group again preserves angles.

A larger group of conformal maps for relating solutions of Maxwell's equations was identified by Ebenezer Cunningham (1908) and Harry Bateman (1910). Their training at Cambridge University had given them facility with the method of image charges and associated methods of images for spheres and inversion. As recounted by Andrew Warwick (2003) Masters of Theory: [22]

Each four-dimensional solution could be inverted in a four-dimensional hyper-sphere of pseudo-radius in order to produce a new solution.

Warwick highlights this "new theorem of relativity" as a Cambridge response to Einstein, and as founded on exercises using the method of inversion, such as found in James Hopwood Jeans textbook Mathematical Theory of Electricity and Magnetism.

General relativity

In general relativity, conformal maps are the simplest and thus most common type of causal transformations. Physically, these describe different universes in which all the same events and interactions are still (causally) possible, but a new additional force is necessary to affect this (that is, replication of all the same trajectories would necessitate departures from geodesic motion because the metric tensor is different). It is often used to try to make models amenable to extension beyond curvature singularities, for example to permit description of the universe even before the Big Bang.

See also

References

  1. ^ Blair, David (2000-08-17). Inversion Theory and Conformal Mapping. The Student Mathematical Library. Vol. 9. Providence, Rhode Island: American Mathematical Society. doi:10.1090/stml/009. ISBN 978-0-8218-2636-2. S2CID 118752074.
  2. ^ Richard M. Timoney (2004), Riemann mapping theorem from Trinity College Dublin
  3. ^ Geometry/Unified Angles at Wikibooks
  4. ^ Tsurusaburo Takasu (1941) Gemeinsame Behandlungsweise der elliptischen konformen, hyperbolischen konformen und parabolischen konformen Differentialgeometrie, 2, Proceedings of the Imperial Academy 17(8): 330–8, link from Project Euclid, MR14282
  5. ^ Selig, Michael S.; Maughmer, Mark D. (1992-05-01). "Multipoint inverse airfoil design method based on conformal mapping". AIAA Journal. 30 (5): 1162–1170. Bibcode:1992AIAAJ..30.1162S. doi:10.2514/3.11046. ISSN 0001-1452.
  6. ^ Cortijo, Vanessa; Alonso, Elena R.; Mata, Santiago; Alonso, José L. (2018-01-18). "Conformational Map of Phenolic Acids". The Journal of Physical Chemistry A. 122 (2): 646–651. Bibcode:2018JPCA..122..646C. doi:10.1021/acs.jpca.7b08882. ISSN 1520-5215. PMID 29215883.
  7. ^ "Properties of Conformal Mapping".
  8. ^ "7.1 GENETIC MAPS COME IN VARIOUS FORMS". www.informatics.jax.org. Retrieved 2022-08-22.
  9. ^ Alim, Karen; Armon, Shahaf; Shraiman, Boris I.; Boudaoud, Arezki (2016). "Leaf growth is conformal". Physical Biology. 13 (5): 05LT01. arXiv:1611.07032. Bibcode:2016PhBio..13eLT01A. doi:10.1088/1478-3975/13/5/05lt01. PMID 27597439. S2CID 9351765. Retrieved 2022-08-22.
  10. ^ González-Matesanz, F. J.; Malpica, J. A. (2006-11-01). "Quasi-conformal mapping with genetic algorithms applied to coordinate transformations". Computers & Geosciences. 32 (9): 1432–1441. Bibcode:2006CG.....32.1432G. doi:10.1016/j.cageo.2006.01.002. ISSN 0098-3004.
  11. ^ Berezovski, Volodymyr; Cherevko, Yevhen; Rýparová, Lenka (August 2019). "Conformal and Geodesic Mappings onto Some Special Spaces". Mathematics. 7 (8): 664. doi:10.3390/math7080664. hdl:11012/188984. ISSN 2227-7390.
  12. ^ Gronwall, T. H. (June 1920). "Conformal Mapping of a Family of Real Conics on Another". Proceedings of the National Academy of Sciences. 6 (6): 312–315. Bibcode:1920PNAS....6..312G. doi:10.1073/pnas.6.6.312. ISSN 0027-8424. PMC 1084530. PMID 16576504.
  13. ^ "Mapping in a sentence (esp. good sentence like quote, proverb...)". sentencedict.com. Retrieved 2022-08-22.
  14. ^ "EAP - Proceedings of the Estonian Academy of Sciences – Publications". Retrieved 2022-08-22.
  15. ^ López-Vázquez, Carlos (2012-01-01). "Positional Accuracy Improvement Using Empirical Analytical Functions". Cartography and Geographic Information Science. 39 (3): 133–139. Bibcode:2012CGISc..39..133L. doi:10.1559/15230406393133. ISSN 1523-0406. S2CID 123894885.
  16. ^ Calixto, Wesley Pacheco; Alvarenga, Bernardo; da Mota, Jesus Carlos; Brito, Leonardo da Cunha; Wu, Marcel; Alves, Aylton José; Neto, Luciano Martins; Antunes, Carlos F. R. Lemos (2011-02-15). "Electromagnetic Problems Solving by Conformal Mapping: A Mathematical Operator for Optimization". Mathematical Problems in Engineering. 2010: e742039. doi:10.1155/2010/742039. hdl:10316/110197. ISSN 1024-123X.
  17. ^ Leonhardt, Ulf (2006-06-23). "Optical Conformal Mapping". Science. 312 (5781): 1777–1780. Bibcode:2006Sci...312.1777L. doi:10.1126/science.1126493. ISSN 0036-8075. PMID 16728596. S2CID 8334444.
  18. ^ Singh, Arun K.; Auton, Gregory; Hill, Ernie; Song, Aimin (2018-07-01). "Estimation of intrinsic and extrinsic capacitances of graphene self-switching diode using conformal mapping technique". 2D Materials. 5 (3): 035023. Bibcode:2018TDM.....5c5023S. doi:10.1088/2053-1583/aac133. ISSN 2053-1583. S2CID 117531045.
  19. ^ Kolaei, Amir; Rakheja, Subhash; Richard, Marc J. (2014-01-06). "Range of applicability of the linear fluid slosh theory for predicting transient lateral slosh and roll stability of tank vehicles". Journal of Sound and Vibration. 333 (1): 263–282. Bibcode:2014JSV...333..263K. doi:10.1016/j.jsv.2013.09.002.
  20. ^ Hinton, Edward; Hogg, Andrew; Huppert, Herbert (2020). "Shallow free-surface Stokes flow around a corner". Philosophical Transactions of the Royal Society A. 378 (2174). Bibcode:2020RSPTA.37890515H. doi:10.1098/rsta.2019.0515. PMC 7287310. PMID 32507085.
  21. ^ Noury, Keyvan; Yang, Bingen (2020). "A Pseudo S-plane Mapping of Z-plane Root Locus". ASME 2020 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers. doi:10.1115/IMECE2020-23096. ISBN 978-0-7918-8454-6. S2CID 234582511.
  22. ^ Warwick, Andrew (2003). Masters of theory : Cambridge and the rise of mathematical physics. University of Chicago Press. pp. 404–424. ISBN 978-0226873756.

Further reading

Read other articles:

3rd edition of the Miss Grand Japan beauty pageant Miss Grand Japan 2017DateSeptember 12, 2017PresentersRyusuke KellyEntertainmentStromVenueSelene Studio, Minato, TokyoEntrants8Placements5WinnerErika Tsuji (Kyoto)Best in SwimsuitArisa Katsumoto (Fukui)← 20162018 → Miss Grand Japan 2017 (Japanese: 2017 ミス・グランド・ジャパン) was the third edition of the Miss Grand Japan pageant, held on September 12, 2017,[1][2] at the Selene Studio, Minato,...

 

 

Main StreetKartu lobiSutradaraHarry BeaumontDitulis olehJulien JosephsonBerdasarkanMain Street olehSinclair LewisPemeranFlorence VidorMonte BlueAlan Hale, Sr.Louise FazendaSinematograferEdwin B. Du ParHomer ScottPenyuntingHarry BeaumontPerusahaanproduksiWarner Bros.DistributorWarner Bros.Tanggal rilis 25 April 1923 (1923-04-25) Durasi96 menit (9 rol)NegaraAmerika SerikatBahasaBisu (intertitel Inggris)Anggaran$270.000[1]Pendapatankotor$556.000[1] Main Street adalah se...

 

 

Questa voce sull'argomento attori italiani è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Giovanna Pala nel film Mamma mia, che impressione! (1951) Giovanna Pala (Vergato, 15 luglio 1932[1]) è un'attrice italiana. Indice 1 Biografia 2 Vita privata 3 Filmografia 4 Note 5 Altri progetti 6 Collegamenti esterni Biografia Giovane modella con tratti fisici da maggiorata, ottenne il secondo posto ne...

Canadian university Not to be confused with College of Mount Saint Vincent. MSVU redirects here. Not to be confused with Mississippi Valley State University (MVSU). This article contains content that is written like an advertisement. Please help improve it by removing promotional content and inappropriate external links, and by adding encyclopedic content written from a neutral point of view. (July 2023) (Learn how and when to remove this template message) Mount Saint Vincent UniversityFormer...

 

 

Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus. Cet article ne cite pas suffisamment ses sources (février 2014). Si vous disposez d'ouvrages ou d'articles de référence ou si vous connaissez des sites web de qualité traitant du thème abordé ici, merci de compléter l'article en donnant les références utiles à sa vérifiabilité et en les liant à la section « Notes et références ». En pratique : Quelles sources sont attendues ? ...

 

 

Voce principale: Juventus Italia Football Club. Juventus Italia Football ClubStagione 1925-1926Sport calcio Squadra Juventus Italia Allenatore Commissione tecnica Presidente ??? Seconda Divisione7º posto nel girone A. Retrocessa nella declassata Seconda Divisione 1926-1927. 1924-1925 1926-1927 Si invita a seguire il modello di voce Questa pagina raccoglie le informazioni riguardanti la Juventus Italia Football Club nelle competizioni ufficiali della stagione 1925-1926. Indice 1 St...

Pemilihan umum Wali Kota Pasuruan 20242020202927 November 2024Kandidat Peta persebaran suara Peta Provinsi Jawa Timur yang menyoroti Kota Pasuruan Wali Kota dan Wakil Wali Kota petahanaSaifullah Yusuf & Adi Wibowo Wali Kota & Wakil Wali Kota terpilih Belum diketahui Pemilihan umum Wali Kota Pasuruan 2024 dilaksanakan pada 27 November 2024 untuk memilih Wali Kota Pasuruan periode 2024–2029.[1] Pemilihan Wali Kota Pasuruan tahun tersebut akan diselenggarakan setelah Pemilihan...

 

 

森川智之配音演员本名同上原文名森川 智之(もりかわ としゆき)罗马拼音Morikawa Toshiyuki昵称モリモリ[1]、帝王[1]国籍 日本出生 (1967-01-26) 1967年1月26日(57歲) 日本東京都品川區[1](神奈川縣川崎市[2]、橫濱市[3]成長)职业配音員、旁白、歌手、藝人音乐类型J-POP出道作品外國人取向的日語教材代表作品但丁(Devil May Cry)D-boy(宇宙騎...

 

 

Cet article est une ébauche concernant la Lettonie et la Renaissance. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Ne pas confondre avec le grand-duché de Livonie. Duché de Livonie (polonais) Księstwo Inflanckie(allemand) Herzogtum Livland(latin) Ducatus Ultradunensis 28 novembre 1561 – 25 septembre 1629Drapeau de 1587 à 1629 Armes Le duché de Livonie (gris foncé) au sein de ...

American baseball player (1969–2023) Baseball player Lee TinsleyTinsley (left) talking to Ken Griffey Jr.OutfielderBorn: (1969-03-04)March 4, 1969Shelbyville, Kentucky, U.S.Died: January 12, 2023(2023-01-12) (aged 53)Scottsdale, Arizona, U.S.Batted: SwitchThrew: RightMLB debutApril 6, 1993, for the Seattle MarinersLast MLB appearanceSeptember 28, 1997, for the Seattle MarinersMLB statisticsBatting average.241Home runs13Runs batted in79 TeamsAs player Seat...

 

 

Avenue in Manhattan, New York For other uses, see Eighth Avenue. Template:Attached KML/Eighth Avenue (Manhattan)KML is from Wikidata Eighth Avenue in June 2013Central Park West (59th–110th Streets)Frederick Douglass Boulevard (north of 110th Street)Facing north on Eighth Avenue from 32nd StreetOwnerCity of New YorkMaintained byNYCDOTLength7.8 mi (12.6 km)[1]LocationManhattan, New York City, U.S.South endHudson / Bleecker Streets in West VillageMajorjunctionsColum...

 

 

Four senior ministerial offices in the UK government Not to be confused with Great Officers of State (United Kingdom). This article is part of a series onPolitics of the United Kingdom Constitution Magna Carta Bill of Rights Treaty of Union (Acts of Union) Parliamentary sovereignty Rule of law Separation of powers Other constitutional principles The Crown The Monarch (list) Charles III Heir apparent William, Prince of Wales Royal family Succession Prerogative Counsellors of State Republicanis...

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Desember 2022. Charlotte TilburyTilbury talks about her cosmetics to Vogue in 2021Lahir10 Februari 1973 (umur 51)London, InggrisDikenal atasPeriasKarya terkenalPendiri Charlotte Tilbury BeautySuami/istriGeorge Waud (m. 2014)Situs webwww.charlottetilbury.com Log...

 

 

City in Switzerland This article is about the city of Geneva. For the canton, see canton of Geneva. For other uses, see Geneva (disambiguation). Genevese redirects here. For the surname, see Genovese. Municipality in SwitzerlandGeneva Genève (French)Municipality FlagCoat of armsLocation of Geneva Genève (French) Geneva Genève (French)Show map of SwitzerlandGeneva Genève (French)Show map of Canton of GenevaCoordinates: 46°12′06″N 06°08′49″E / 4...

 

 

Irvine PagePage (right) and lab tech in the 1960sBornIrvine Heinly Page(1901-01-07)January 7, 1901Indianapolis, Indiana, USDiedJune 10, 1991(1991-06-10) (aged 90)Hyannis Port, Massachusetts, US Irvine Heinly Page (January 7, 1901 – June 10, 1991) was an American physiologist who played an important part in the field of hypertension for almost 60 years while working at the Cleveland Clinic as the first Chair of Research.[1][2][3] Early life and education Irvine P...

ReservationUte Mountain ReservationReservation FlagSealLocation of the Ute Mountain ReservationConstitution1940Seat of GovernmentTowaoc, ColoradoGovernment • BodyTribal Administration Department • Chairman of the Tribal Administration DepartmentHarold CuthairArea • Total2,238 km2 (864 sq mi)Population (2020) • Total1,656Time zoneMST/MDTWebsite[1] The Ute Mountain Ute Tribe /ˈjuːt/ (Ute dialect: Wʉgama Núuchi) is one of th...

 

 

Belizean island in the Sarstoon River Sarstoon IslandSatellite image of Sarstoon Island taken by Landsat 8GeographyLocationSarstoon RiverCoordinates15°53′28″N 88°55′29″W / 15.8910°N 88.9247°W / 15.8910; -88.9247Area0.68 km2 (0.26 sq mi)AdministrationBelizeDistrictToledoDemographicsPopulationuninhabited Sarstoon Island is an island at the southernmost point of Belize located near the mouth of the Sarstoon River. The Sarstoon River is located a...

 

 

Battle of Monck's CornerPart of the American Revolutionary WarDateApril 14, 1780LocationMoncks Corner, South Carolina33°11′48″N 80°0′24″W / 33.19667°N 80.00667°W / 33.19667; -80.00667Result British victoryBelligerents  Great Britain Loyalists  United StatesCommanders and leaders Banastre TarletonJames WebsterPatrick Ferguson Isaac HugerWilliam WashingtonStrength 1400 soldiers 500 militiaCasualties and losses 3 wounded 20 killed or wounded,67 captu...

قانون فاعلية الكتلةمعلومات عامةمجال العمل حركية كيميائية سُمِّي باسم كاتو ماكسيميليان غولدبرغبيتر واج حلَّ محل Law of chemical equilibrium (en) المكتشف أو المخترع كاتو ماكسيميليان غولدبرغبيتر واج زمن الاكتشاف أو الاختراع 1864[1][2] تعديل - تعديل مصدري - تعديل ويكي بيانات قانون فاع...

 

 

Untuk kota di Suriah yang disebut Tortosa selama Perang Salib, lihat Tartous. Pemandangan Tortosa Tortosa (bahasa Latin Dertusa, bahasa Arab طرطوشة Ṭurṭūšah) adalah ibu kota dari comarca Baix Ebre, di provinsi Tarragona, di Catalonia, Spanyol, dan memiliki populasi populasi 30.088 (1996). Kota ini dikuasai dari tangan orang Moor oleh Raja Ramon Berenguer IV dari Barcelona tahun 1148. Lokasi Tortosa Demografi Perkembangan demografi Tortosa antara 1991 sampai 2004 1991 1996 2001 200...