Dual number

In algebra, the dual numbers are a hypercomplex number system first introduced in the 19th century. They are expressions of the form a + , where a and b are real numbers, and ε is a symbol taken to satisfy with .

Dual numbers can be added component-wise, and multiplied by the formula

which follows from the property ε2 = 0 and the fact that multiplication is a bilinear operation.

The dual numbers form a commutative algebra of dimension two over the reals, and also an Artinian local ring. They are one of the simplest examples of a ring that has nonzero nilpotent elements.

History

Dual numbers were introduced in 1873 by William Clifford, and were used at the beginning of the twentieth century by the German mathematician Eduard Study, who used them to represent the dual angle which measures the relative position of two skew lines in space. Study defined a dual angle as θ + , where θ is the angle between the directions of two lines in three-dimensional space and d is a distance between them. The n-dimensional generalization, the Grassmann number, was introduced by Hermann Grassmann in the late 19th century.

Modern definition

In modern algebra, the algebra of dual numbers is often defined as the quotient of a polynomial ring over the real numbers by the principal ideal generated by the square of the indeterminate, that is

It may also be defined as the exterior algebra of a one-dimensional vector space with as its basis element.

Division

Division of dual numbers is defined when the real part of the denominator is non-zero. The division process is analogous to complex division in that the denominator is multiplied by its conjugate in order to cancel the non-real parts.

Therefore, to evaluate an expression of the form

we multiply the numerator and denominator by the conjugate of the denominator:

which is defined when c is non-zero.

If, on the other hand, c is zero while d is not, then the equation

  1. has no solution if a is nonzero
  2. is otherwise solved by any dual number of the form b/d + .

This means that the non-real part of the "quotient" is arbitrary and division is therefore not defined for purely nonreal dual numbers. Indeed, they are (trivially) zero divisors and clearly form an ideal of the associative algebra (and thus ring) of the dual numbers.

Matrix representation

The dual number can be represented by the square matrix . In this representation the matrix squares to the zero matrix, corresponding to the dual number .

There are other ways to represent dual numbers as square matrices. They consist of representing the dual number by the identity matrix, and by any matrix whose square is the zero matrix; that is, in the case of 2×2 matrices, any nonzero matrix of the form

with [1]

Differentiation

One application of dual numbers is automatic differentiation. Any polynomial

with real coefficients can be extended to a function of a dual-number-valued argument,

where is the derivative of

More generally, any (analytic) real function can be extended to the dual numbers via its Taylor series:

since all terms involving ε2 or greater powers are trivially 0 by the definition of ε.

By computing compositions of these functions over the dual numbers and examining the coefficient of ε in the result we find we have automatically computed the derivative of the composition.

A similar method works for polynomials of n variables, using the exterior algebra of an n-dimensional vector space.

Geometry

The "unit circle" of dual numbers consists of those with a = ±1 since these satisfy zz* = 1 where z* = a. However, note that

so the exponential map applied to the ε-axis covers only half the "circle".

Let z = a + . If a ≠ 0 and m = b/a, then z = a(1 + ) is the polar decomposition of the dual number z, and the slope m is its angular part. The concept of a rotation in the dual number plane is equivalent to a vertical shear mapping since (1 + )(1 + ) = 1 + (p + q)ε.

In absolute space and time the Galilean transformation

that is

relates the resting coordinates system to a moving frame of reference of velocity v. With dual numbers t + representing events along one space dimension and time, the same transformation is effected with multiplication by 1 + .

Cycles

Given two dual numbers p and q, they determine the set of z such that the difference in slopes ("Galilean angle") between the lines from z to p and q is constant. This set is a cycle in the dual number plane; since the equation setting the difference in slopes of the lines to a constant is a quadratic equation in the real part of z, a cycle is a parabola. The "cyclic rotation" of the dual number plane occurs as a motion of its projective line. According to Isaak Yaglom,[2]: 92–93  the cycle Z = {z : y = αx2} is invariant under the composition of the shear

with the translation

Applications in mechanics

Dual numbers find applications in mechanics, notably for kinematic synthesis. For example, the dual numbers make it possible to transform the input/output equations of a four-bar spherical linkage, which includes only rotoid joints, into a four-bar spatial mechanism (rotoid, rotoid, rotoid, cylindrical). The dualized angles are made of a primitive part, the angles, and a dual part, which has units of length.[3] See screw theory for more.

Algebraic geometry

In modern algebraic geometry, the dual numbers over a field (by which we mean the ring ) may be used to define the tangent vectors to the points of a -scheme.[4] Since the field can be chosen intrinsically, it is possible to speak simply of the tangent vectors to a scheme. This allows notions from differential geometry to be imported into algebraic geometry.

In detail: The ring of dual numbers may be thought of as the ring of functions on the "first-order neighborhood of a point" – namely, the -scheme .[4] Then, given a -scheme , -points of the scheme are in 1-1 correspondence with maps , while tangent vectors are in 1-1 correspondence with maps .

The field above can be chosen intrinsically to be a residue field. To wit: Given a point on a scheme , consider the stalk . Observe that is a local ring with a unique maximal ideal, which is denoted . Then simply let .

Generalizations

This construction can be carried out more generally: for a commutative ring R one can define the dual numbers over R as the quotient of the polynomial ring R[X] by the ideal (X2): the image of X then has square equal to zero and corresponds to the element ε from above.

Arbitrary module of elements of zero square

There is a more general construction of the dual numbers. Given a commutative ring and a module , there is a ring called the ring of dual numbers which has the following structures:

It is the -module with the multiplication defined by for and

The algebra of dual numbers is the special case where and

Superspace

Dual numbers find applications in physics, where they constitute one of the simplest non-trivial examples of a superspace. Equivalently, they are supernumbers with just one generator; supernumbers generalize the concept to n distinct generators ε, each anti-commuting, possibly taking n to infinity. Superspace generalizes supernumbers slightly, by allowing multiple commuting dimensions.

The motivation for introducing dual numbers into physics follows from the Pauli exclusion principle for fermions. The direction along ε is termed the "fermionic" direction, and the real component is termed the "bosonic" direction. The fermionic direction earns this name from the fact that fermions obey the Pauli exclusion principle: under the exchange of coordinates, the quantum mechanical wave function changes sign, and thus vanishes if two coordinates are brought together; this physical idea is captured by the algebraic relation ε2 = 0.

Projective line

The idea of a projective line over dual numbers was advanced by Grünwald[5] and Corrado Segre.[6]

Just as the Riemann sphere needs a north pole point at infinity to close up the complex projective line, so a line at infinity succeeds in closing up the plane of dual numbers to a cylinder.[2]: 149–153 

Suppose D is the ring of dual numbers x + and U is the subset with x ≠ 0. Then U is the group of units of D. Let B = {(a, b) ∈ D × D : a ∈ U or b ∈ U}. A relation is defined on B as follows: (a, b) ~ (c, d) when there is a u in U such that ua = c and ub = d. This relation is in fact an equivalence relation. The points of the projective line over D are equivalence classes in B under this relation: P(D) = B/~. They are represented with projective coordinates [a, b].

Consider the embedding DP(D) by z → [z, 1]. Then points [1, n], for n2 = 0, are in P(D) but are not the image of any point under the embedding. P(D) is mapped onto a cylinder by projection: Take a cylinder tangent to the double number plane on the line { : yR}, ε2 = 0. Now take the opposite line on the cylinder for the axis of a pencil of planes. The planes intersecting the dual number plane and cylinder provide a correspondence of points between these surfaces. The plane parallel to the dual number plane corresponds to points [1, n], n2 = 0 in the projective line over dual numbers.

See also

References

  1. ^ Abstract Algebra/2x2 real matrices at Wikibooks
  2. ^ a b Yaglom, I. M. (1979). A Simple Non-Euclidean Geometry and its Physical Basis. Springer. ISBN 0-387-90332-1. MR 0520230.
  3. ^ Angeles, Jorge (1998), Angeles, Jorge; Zakhariev, Evtim (eds.), "The Application of Dual Algebra to Kinematic Analysis", Computational Methods in Mechanical Systems: Mechanism Analysis, Synthesis, and Optimization, NATO ASI Series, vol. 161, Springer Berlin Heidelberg, pp. 3–32, doi:10.1007/978-3-662-03729-4_1, ISBN 9783662037294
  4. ^ a b Shafarevich, Igor R. (2013), "Schemes", Basic Algebraic Geometry 2, Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 35–38, doi:10.1007/978-3-642-38010-5_1, ISBN 978-3-642-38009-9, retrieved 2023-12-27
  5. ^ Grünwald, Josef (1906). "Über duale Zahlen und ihre Anwendung in der Geometrie". Monatshefte für Mathematik. 17: 81–136. doi:10.1007/BF01697639. S2CID 119840611.
  6. ^ Segre, Corrado (1912). "XL. Le geometrie proiettive nei campi di numeri duali". Opere. Also in Atti della Reale Accademia della Scienze di Torino 47.

Further reading

Read other articles:

This is a list of variants of the Harrier jump jet family of V/STOL ground attack fighter aircraft. Hawker Siddeley P.1127 Prototype Hawker P.1127 XP831 in 1962 P.1127 Experimental V/STOL fighter, two prototypes and four development aircraft.[1] Kestrel FGA.1 Aircraft for the tripartite evaluation squadron, nine built, six later transferred to the United States where they were designated XV-6A.[2] P.1127 (RAF) Development V/STOL ground attack and reconnaissance fighter, six b...

 

 

Tatsuya NōmiNama asal能見 達也LahirTakashi Nōmi (能見毅code: ja is deprecated , Nōmi Takashi)(1969-08-13)13 Agustus 1969Tokyo, JepangMeninggal18 Mei 2017(2017-05-18) (umur 47)PekerjaanAktorTahun aktif1989–2013AgenOhta ProductionKarya terkenalTengensei Daigo/ShishiRanger di Gosei Sentai Dairanger Tatsuya Nomi (能見 達也code: ja is deprecated , Nōmi Tatsuya), terlahir sebagai Takashi Nomi (能見 毅code: ja is deprecated , Nōmi Takashi) (13 Agustus 1969 &...

 

 

PemberitahuanTemplat ini mendeteksi bahwa artikel bahasa ini masih belum dinilai kualitasnya oleh ProyekWiki Bahasa dan ProyekWiki terkait dengan subjek. Perhatian: untuk penilai, halaman pembicaraan artikel ini telah diisi sehingga penilaian akan berkonflik dengan isi sebelumnya. Harap salin kode dibawah ini sebelum menilai. {{PW Bahasa|importance=|class=}} Terjadi [[false positive]]? Silakan laporkan kesalahan ini. 07.08, Sabtu, 30 Maret, 2024 (UTC) • hapus singgahan Seban...

Untuk kegunaan lain, lihat BCG (disambiguasi). Artikel ini memerlukan pemutakhiran informasi. Harap perbarui artikel dengan menambahkan informasi terbaru yang tersedia. Boston Consulting GroupJenisSwastaIndustriKonsultansi manajemenDidirikan1963; 61 tahun lalu (1963)PendiriBruce HendersonKantorpusatBoston, Massachusetts, Amerika SerikatCabangLebih dari 90 kantor[1]Wilayah operasiSeluruh duniaTokohkunciRich Lesser (CEO)[2]Pendapatan$8,5 milyar (2019)[3]Karyawan21.0...

 

 

N1 (Bahasa Rusia: Н1 – dari Носитель:Nositel', pengangkut)[1] adalah roket angkut berat untuk membawa muatan melampaui orbit bumi rendah, sebagai jawaban Soviet atas roket Saturn V milik NASA.[2][3] Roket ini mampu mengorbitkan beban sangat berat, dan dirancang untuk membawa awak ke luar orbit. Pengembangan N1 dimulai pada tahun 1959.[3] Tingkat pertamanya adalah tingkatan roket paling kuat yang pernah dibuat.[4] Versi N1-L3 dikembangkan untu...

 

 

Bhanumati RamakrishnaLahir(1925-09-07)7 September 1925Doddavaram, dekat Ongole, Distrik Prakasam, Andhra Pradesh, IndiaMeninggal24 Desember 2005(2005-12-24) (umur 80)Chennai, IndiaPekerjaanAktrisPenyanyiPenulisSutradara MusikSutradaraSuami/istriP. S. Ramakrishna Rao Paluvayi Bhanumathi Ramakrishna (7 September 1925 – 24 Desember 2005) adalah seorang aktris, sutradara, sutradara musik, penyanyi, produser, penulis buku dan penulis lagu multibahasa film India.[1] [2] Keba...

Watsons BayMV Pemulwuy at Milsons Point in November 2017WaterwaySydney HarbourOwnerSydney FerriesOperatorTransdev Sydney FerriesBegan operation25 October 2020System length3 wharves, 10.1kmNo. of vesselsEmerald and SuperCat class Sydney Ferries services Manly Taronga Zoo Parramatta River Pyrmont Bay Neutral Bay Mosman Bay Double Bay Cockatoo Island Watsons Bay Blackwattle Bay vte The Watsons Bay ferry service, officially known as F9 Watsons Bay, is a commuter ferry service in Sydney, New Sout...

 

 

Arcandra TaharArcandra Tahar sebagai Wakil Komisaris Utama Pertamina merangkap Wakil Menteri ESDM (2017) Menteri Energi dan Sumber Daya Mineral Indonesia ke-16Masa jabatan27 Juli 2016 – 15 Agustus 2016PresidenJoko WidodoWakil PresidenJusuf KallaPendahuluSudirman SaidPenggantiIgnasius JonanWakil Menteri Energi dan Sumber Daya Mineral Indonesia ke-5Masa jabatan14 Oktober 2016 – 20 Oktober 2019PresidenJoko WidodoWakil PresidenJusuf KallaMenteriIgnasius JonanPendahul...

 

 

Species of flowering plant Ipomoea tuberculata Scientific classification Kingdom: Plantae Clade: Tracheophytes Clade: Angiosperms Clade: Eudicots Clade: Asterids Order: Solanales Family: Convolvulaceae Genus: Ipomoea Species: I. tuberculata Binomial name Ipomoea tuberculataKer Gawl. Synonyms Ipomoea odontosepala Ipomoea calcarata Ipomoea cairica Ipomoea tuberculata Convolvulus tuberculatus[1] Ipomoea tuberculata is a flowering plant species in the bindweed family (Convolvulaceae)...

German dancehall artist This biography of a living person needs additional citations for verification. Please help by adding reliable sources. Contentious material about living persons that is unsourced or poorly sourced must be removed immediately from the article and its talk page, especially if potentially libelous.Find sources: Dr. Ring-Ding – news · newspapers · books · scholar · JSTOR (May 2010) (Learn how and when to remove this message) Dr. Rin...

 

 

Chaplin: The MusicalThe Story of Charlie ChaplinMusikChristopher CurtisLirikChristopher CurtisNaskahChristopher Curtis Thomas MeehanProduksi2006 New York Musical Theatre Festival 2010 La Jolla Playhouse2012 Broadway 2013 St. Petersburg 2014 Theatro NET SP - Brazil 2016 Henderson, Kentucky Chaplin: The Musical, yang awalnya berjudul Limelight: The Story of Charlie Chaplin, adalah sebuah musikal dengan musik dan lirik buatan Christopher Curtis dan sebuah buku karya Curtis dan Thomas Meehan. Aca...

 

 

Частина серії проФілософіяLeft to right: Plato, Kant, Nietzsche, Buddha, Confucius, AverroesПлатонКантНіцшеБуддаКонфуційАверроес Філософи Епістемологи Естетики Етики Логіки Метафізики Соціально-політичні філософи Традиції Аналітична Арістотелівська Африканська Близькосхідна іранська Буддій�...

Si UnyilGenreAnak-anakNegara asalIndonesiaBahasa asliBahasa IndonesiaJmlh. musim18Jmlh. episode10.700 (berjalan pada 23 Februari 2024)ProduksiDurasi30 menitRumah produksiPPFN (2007-2024)Trans Media (2007-2024)Net Visi Media (2023-2024)Rilis asliJaringanTrans7 (2007-2024)NET. (2023-2924)RilisSenin, 19 Maret 2007 –Jumat, 23 Februari 2024Acara terkaitBuku Harian Si Unyil Si Unyil (sebelumnya Laptop Si Unyil) adalah sebuah program anak-anak yang tayang pertama kali di Trans7 mulai tanggal...

 

 

Airport serving Xalapa, Veracruz, Mexico Xalapa National AirportAeropuerto Nacional de XalapaIATA: JALICAO: MMJASummaryAirport typePublicOperatorServicios Aeroportuarios de VeracruzServesXalapa, Veracruz, MexicoLocationEmiliano Zapata, Veracruz, MexicoTime zoneCST (UTC-06:00)Elevation AMSL955 m / 3,133 ftCoordinates19°28′30″N 96°47′51″W / 19.47500°N 96.79750°W / 19.47500; -96.79750MapJALLocation of airport in VeracruzShow map of VeracruzJALJA...

 

 

Introductory section of a document which states its purpose and philosophy For the first national anthem of the Federated States of Micronesia, see Preamble (anthem). For the data sequence used to synchronize communications, see Preamble (communication). This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Preamble – news · newspa...

Malaysian public servant In this Malay name, there is no surname or family name. The name Ali is a patronymic, and the person should be referred to by their given name, Mohd Zuki. The word bin or binti/binte means 'son of' or 'daughter of', respectively. Yang Berbahagia Tan Sri Dato' SeriMohd Zuki AliPMN PSD SPMS SPCM SSMZ SPDK DA SMW DIMP JSD AMT PPT15th Chief Secretary to the Government of MalaysiaIncumbentAssumed office 1 January 2020Mona...

 

 

Part of a series on theCulture of Japan History Era names Demographics Historical currency Economic history Education, Science, and Technology Healthcare Imperial history Foreign relations Historiography Military history Naval history Post-Japanese occupation history People Japanese Zainichi Koreans Ainu Ōbeikei Islanders Yamato Ryukuyuans Languages Japonic Japanese Ryukyuan Hachijō Ainu Writing system Japanese Sign Language Traditions Clothing Etiquette Funerals Games Geisha Wasōbon Marri...

 

 

Cambios de frontera en Venecia Julia entre 1918 y 1954. Venecia Julia (Venezia Giulia en italiano, Venesia Jułia en véneto, Vignesie Julie en friulano, Julisch Venetien en alemán, Julijska Krajina en esloveno y croata), es una región geográfica comprendida entre los Alpes Julianos y el mar Adriático, desde el golfo de Trieste a la Punta Promontore (extremo meridional de Istria), al golfo de Fiume y a las islas del Quarnaro. Esta antigua región política del sureste de Europa en la que ...

Hominin fossil Manot 1 is a fossil specimen designated to a skullcap that represents an archaic modern human discovered in Manot Cave, Western Galilee, Israel.[1] It was discovered in 2008 and the scientific description was published in 2015.[2] Radiometric dating indicates that it is about 54,700 years old (the late Mousterian), and thought to be directly ancestral to the Upper Paleolithic populations of the Levant and Europe.[3] Discovery Manot Cave under excavation ...

 

 

Her Purchase PricePoster teatrikalSutradaraHoward C. HickmanProduserB&B FeaturesDitulis olehMaie B. Havey (cerita)Harvey F. Thew (skenario)PemeranBessie BarriscaleSinematograferGus PetersonDistributorRobertson-ColeTanggal rilis 1 September 1919 (1919-09-01) Durasi5 rolNegaraAmerika SerikatBahasaBisu (intertitel Inggris) Her Purchase Price adalah sebuah film romansa bisu tahun 1919 yang hilang[1] yang didistribusikan oleh Robertson-Cole. Film tersebut disutradarai oleh Howard ...