Grassmann number

In mathematical physics, a Grassmann number, named after Hermann Grassmann (also called an anticommuting number or supernumber), is an element of the exterior algebra of a complex vector space.[1] The special case of a 1-dimensional algebra is known as a dual number. Grassmann numbers saw an early use in physics to express a path integral representation for fermionic fields, although they are now widely used as a foundation for superspace, on which supersymmetry is constructed.

Informal discussion

Grassmann numbers are generated by anti-commuting elements or objects. The idea of anti-commuting objects arises in multiple areas of mathematics: they are typically seen in differential geometry, where the differential forms are anti-commuting. Differential forms are normally defined in terms of derivatives on a manifold; however, one can contemplate the situation where one "forgets" or "ignores" the existence of any underlying manifold, and "forgets" or "ignores" that the forms were defined as derivatives, and instead, simply contemplate a situation where one has objects that anti-commute, and have no other pre-defined or presupposed properties. Such objects form an algebra, and specifically the Grassmann algebra or exterior algebra.

The Grassmann numbers are elements of that algebra. The appellation of "number" is justified by the fact that they behave not unlike "ordinary" numbers: they can be added, multiplied and divided: they behave almost like a field. More can be done: one can consider polynomials of Grassmann numbers, leading to the idea of holomorphic functions. One can take derivatives of such functions, and then consider the anti-derivatives as well. Each of these ideas can be carefully defined, and correspond reasonably well to the equivalent concepts from ordinary mathematics. The analogy does not stop there: one has an entire branch of supermathematics, where the analog of Euclidean space is superspace, the analog of a manifold is a supermanifold, the analog of a Lie algebra is a Lie superalgebra and so on. The Grassmann numbers are the underlying construct that make this all possible.

Of course, one could pursue a similar program for any other field, or even ring, and this is indeed widely and commonly done in mathematics. However, supermathematics takes on a special significance in physics, because the anti-commuting behavior can be strongly identified with the quantum-mechanical behavior of fermions: the anti-commutation is that of the Pauli exclusion principle. Thus, the study of Grassmann numbers, and of supermathematics, in general, is strongly driven by their utility in physics.

Specifically, in quantum field theory, or more narrowly, second quantization, one works with ladder operators that create multi-particle quantum states. The ladder operators for fermions create field quanta that must necessarily have anti-symmetric wave functions, as this is forced by the Pauli exclusion principle. In this situation, a Grassmann number corresponds immediately and directly to a wave function that contains some (typically indeterminate) number of fermions.

When the number of fermions is fixed and finite, an explicit relationship between anticommutation relations and spinors is given by means of the spin group. This group can be defined as the subset of unit-length vectors in the Clifford algebra, and naturally factorizes into anti-commuting Weyl spinors. Both the anti-commutation and the expression as spinors arises in a natural fashion for the spin group. In essence, the Grassmann numbers can be thought of as discarding the relationships arising from spin, and keeping only the relationships due to anti-commutation.

General description and properties

Grassmann numbers are individual elements or points of the exterior algebra generated by a set of n Grassmann variables or Grassmann directions or supercharges , with n possibly being infinite. The usage of the term "Grassmann variables" is historic; they are not variables, per se; they are better understood as the basis elements of a unital algebra. The terminology comes from the fact that a primary use is to define integrals, and that the variable of integration is Grassmann-valued, and thus, by abuse of language, is called a Grassmann variable. Similarly, the notion of direction comes from the notion of superspace, where ordinary Euclidean space is extended with additional Grassmann-valued "directions". The appellation of charge comes from the notion of charges in physics, which correspond to the generators of physical symmetries (via Noether's theorem). The perceived symmetry is that multiplication by a single Grassmann variable swaps the grading between fermions and bosons; this is discussed in greater detail below.

The Grassmann variables are the basis vectors of a vector space (of dimension n). They form an algebra over a field, with the field usually being taken to be the complex numbers, although one could contemplate other fields, such as the reals. The algebra is a unital algebra, and the generators are anti-commuting:

Since the are elements of a vector space over the complex numbers, they, by definition, commute with complex numbers. That is, for complex x, one has

The squares of the generators vanish:

since

In other words, a Grassmann variable is a non-zero square-root of zero.

Formal definition

Formally, let V be an n-dimensional complex vector space with basis . The Grassmann algebra whose Grassmann variables are is defined to be the exterior algebra of V, namely

where is the exterior product and is the direct sum. The individual elements of this algebra are then called Grassmann numbers. It is standard to omit the wedge symbol when writing a Grassmann number once the definition is established. A general Grassmann number can be written as

where are strictly increasing k-tuples with , and the are complex, completely antisymmetric tensors of rank k. Again, the , and the (subject to ), and larger finite products, can be seen here to be playing the role of a basis vectors of subspaces of .

The Grassmann algebra generated by n linearly independent Grassmann variables has dimension 2n; this follows from the binomial theorem applied to the above sum, and the fact that the (n + 1)-fold product of variables must vanish, by the anti-commutation relations, above. The dimension of is given by n choose k, the binomial coefficient. The special case of n = 1 is called a dual number, and was introduced by William Clifford in 1873.

In case V is infinite-dimensional, the above series does not terminate and one defines

The general element is now

where is sometimes referred to as the body and as the soul of the supernumber .

Properties

In the finite-dimensional case (using the same terminology) the soul is nilpotent, i.e.

but this is not necessarily so in the infinite-dimensional case.[2]

If V is finite-dimensional, then

and if V is infinite-dimensional[3]

Finite vs. countable sets of generators

Two distinct kinds of supernumbers commonly appear in the literature: those with a finite number of generators, typically n = 1, 2, 3 or 4, and those with a countably-infinite number of generators. These two situations are not as unrelated as they may seem at first. First, in the definition of a supermanifold, one variant uses a countably-infinite number of generators, but then employs a topology that effectively reduces the dimension to a small finite number.[4][5]

In the other case, one may start with a finite number of generators, but in the course of second quantization, a need for an infinite number of generators arises: one each for every possible momentum that a fermion might carry.

Involution, choice of field

The complex numbers are usually chosen as the field for the definition of the Grassmann numbers, as opposed to the real numbers, as this avoids some strange behaviors when a conjugation or involution is introduced. It is common to introduce an operator * on the Grassmann numbers such that:

when is a generator, and such that

One may then consider Grassmann numbers z for which , and term these (super) real, while those that obey are termed (super) imaginary. These definitions carry through just fine, even if the Grassmann numbers use the real numbers as the base field; however, in such a case, many coefficients are forced to vanish if the number of generators is less than 4. Thus, by convention, the Grassmann numbers are usually defined over the complex numbers.

Other conventions are possible; the above is sometimes referred to as the DeWitt convention; Rogers employs for the involution. In this convention, the real supernumbers always have real coefficients; whereas in the DeWitt convention, the real supernumbers may have both real and imaginary coefficients. Despite this, it is usually easiest to work with the DeWitt convention.

Analysis

Products of an odd number of Grassmann variables anti-commute with each other; such a product is often called an a-number. Products of an even number of Grassmann variables commute (with all Grassman numbers); they are often called c-numbers. By abuse of terminology, an a-number is sometimes called an anticommuting c-number. This decomposition into even and odd subspaces provides a grading on the algebra; thus Grassmann algebras are the prototypical examples of supercommutative algebras. Note that the c-numbers form a subalgebra of , but the a-numbers do not (they are a subspace, not a subalgebra).

The definition of Grassmann numbers allows mathematical analysis to be performed, in analogy to analysis on complex numbers. That is, one may define superholomorphic functions, define derivatives, as well as defining integrals. Some of the basic concepts are developed in greater detail in the article on dual numbers.

As a general rule, it is usually easier to define the super-symmetric analogs of ordinary mathematical entities by working with Grassmann numbers with an infinite number of generators: most definitions become straightforward, and can be taken over from the corresponding bosonic definitions. For example, a single Grassmann number can be thought of as generating a one-dimensional space. A vector space, the m-dimensional superspace, then appears as the m-fold Cartesian product of these one-dimensional [clarification needed] It can be shown that this is essentially equivalent to an algebra with m generators, but this requires work.[6][clarification needed]

Spinor space

The spinor space is defined as the Grassmann or exterior algebra of the space of Weyl spinors (and anti-spinors ), such that the wave functions of n fermions belong in .

Integration

Integrals over Grassmann numbers are known as Berezin integrals (sometimes called Grassmann integrals). In order to reproduce the path integral for a Fermi field, the definition of Grassmann integration needs to have the following properties:

  • linearity
  • partial integration formula

Moreover, the Taylor expansion of any function terminates after two terms because , and quantum field theory additionally require invariance under the shift of integration variables such that

The only linear function satisfying this condition is a constant (conventionally 1) times B, so Berezin defined[7]

This results in the following rules for the integration of a Grassmann quantity:

Thus we conclude that the operations of integration and differentiation of a Grassmann number are identical.

In the path integral formulation of quantum field theory the following Gaussian integral of Grassmann quantities is needed for fermionic anticommuting fields, with A being an N × N matrix:

.

Conventions and complex integration

An ambiguity arises when integrating over multiple Grassmann numbers. The convention that performs the innermost integral first yields

Some authors also define complex conjugation similar to Hermitian conjugation of operators,[8]

With the additional convention

we can treat θ and θ* as independent Grassmann numbers, and adopt

Thus a Gaussian integral evaluates to

and an extra factor of θθ* effectively introduces a factor of (1/b), just like an ordinary Gaussian,

After proving unitarity, we can evaluate a general Gaussian integral involving a Hermitian matrix B with eigenvalues bi,[8][9]

Matrix representations

Grassmann numbers can be represented by matrices. Consider, for example, the Grassmann algebra generated by two Grassmann numbers and . These Grassmann numbers can be represented by 4×4 matrices:

In general, a Grassmann algebra on n generators can be represented by 2n × 2n square matrices. Physically, these matrices can be thought of as raising operators acting on a Hilbert space of n identical fermions in the occupation number basis. Since the occupation number for each fermion is 0 or 1, there are 2n possible basis states. Mathematically, these matrices can be interpreted as the linear operators corresponding to left exterior multiplication on the Grassmann algebra itself.

Generalisations

There are some generalisations to Grassmann numbers. These require rules in terms of N variables such that:

where the indices are summed over all permutations so that as a consequence:

for some N > 2. These are useful for calculating hyperdeterminants of N-tensors where N > 2 and also for calculating discriminants of polynomials for powers larger than 2. There is also the limiting case as N tends to infinity in which case one can define analytic functions on the numbers. For example, in the case with N = 3 a single Grassmann number can be represented by the matrix:

so that . For two Grassmann numbers the matrix would be of size 10×10.

For example, the rules for N = 3 with two Grassmann variables imply:

so that it can be shown that

and so

which gives a definition for the hyperdeterminant of a 2×2×2 tensor as

See also

Notes

  1. ^ DeWitt 1984, Chapter 1, page 1.
  2. ^ DeWitt 1984, pp. 1–2.
  3. ^ DeWitt 1984, p. 2.
  4. ^ Rogers 2007a, Chapter 1 (available online)
  5. ^ Rogers 2007, Chapter 1 and Chapter 8.
  6. ^ Rogers 2007
  7. ^ Berezin, F. A. (1966). The Method of Second Quantization. Pure and Applied Physics. Vol. 24. New York. ISSN 0079-8193.{{cite book}}: CS1 maint: location missing publisher (link)
  8. ^ a b Peskin, Michael E.; Schroeder, Daniel V. (1995). An introduction to quantum field theory (5. (corrected) printing. ed.). Reading, Mass.: Addison-Wesley. ISBN 9780201503975.
  9. ^ Indices' typo present in source.

References

Read other articles:

Burbankcity(EN) Burbank, California Burbank – VedutaPanorama LocalizzazioneStato Stati Uniti Stato federato California ConteaLos Angeles AmministrazioneSindacoNick Schultz TerritorioCoordinate34°10′49″N 118°19′42″W / 34.180278°N 118.328333°W34.180278; -118.328333 (Burbank)Coordinate: 34°10′49″N 118°19′42″W / 34.180278°N 118.328333°W34.180278; -118.328333 (Burbank) Altitudine185 m s.l.m. Superficie45,011 km² Ab...

 

 

История Кореи Доисторическая Корея Кочосон, Чингук Ранние корейские государства: Пуё, Окчо, Тонокчо, Е, Тонъе, Пёнхан, Чинхан, Махан,Четыре ханьских округа Три корейских государства:  Когурё  Пэкче  Силла  Конфедерация Кая Поздние три корейские государства Позд...

 

 

Ada YonathAda Yonath en 2013.BiographieNaissance 22 juin 1939 (84 ans)Jérusalem, IsraëlNom de naissance Ada LifshitzNationalité israélienneFormation Université hébraïque de JérusalemInstitut WeizmannActivités Biologiste moléculaire, cristallographe, biochimiste, professeure d’université, chimiste, scientifiqueAutres informationsA travaillé pour Université de ChicagoWeizman Institutt for Vitenskap - Institutt for Realfagsundervisning (d)Membre de Académie américaine des s...

Wakil Bupati Labuhanbatu UtaraPetahanaSamsul Tanjungsejak 26 Februari 2021KediamanRumah Dinas Wakil Bupati Labuhanbatu UtaraDibentuk15 November 2010Pejabat pertamaMinan PasaribuSitus webhttp://www.labuhanbatuutarakab.go.id Berikut ini adalah daftar Wakil Bupati Labuhanbatu Utara dari masa ke masa. No Wakil Bupati Mulai menjabat Akhir menjabat Prd. Ket. Bupati 1 Minan Pasaribu 15 November 2010 15 November 2015 1 Khairuddin Syah Sitorus Tidak ada 2015 2016 — M Zein Siregar 2 Dwi Prantara...

 

 

Questa voce o sezione tratta di un conflitto in corso. Le informazioni possono pertanto cambiare rapidamente con il progredire degli eventi. Se vuoi scrivere un articolo giornalistico sull'argomento, puoi farlo su Wikinotizie. Non aggiungere speculazioni alla voce. Guerra civile sirianaparte della primavera araba e dell'inverno araboSituazione militare al novembre 2023:      Forze governative      Coalizione d'opposizione (con truppe della Tu...

 

 

العلاقات الأسترالية التشادية أستراليا تشاد   أستراليا   تشاد تعديل مصدري - تعديل   العلاقات الأسترالية التشادية هي العلاقات الثنائية التي تجمع بين أستراليا وتشاد.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه المقارنة...

Estonieau Concours Eurovision 2022 Données clés Pays  Estonie Chanson Hope Interprète Stefan Langue Anglais Sélection nationale Radiodiffuseur Eesti Televisioon Type de sélection Eesti Laul 2022 Date 12 février 2022 Concours Eurovision de la chanson 2022 Position en demi-finale 5e (209 points, qualifiée) Position en finale 13e (141 points) 2021 2023 modifier L'Estonie est l'un des quarante pays participants du Concours Eurovision de la chanson 2022, qui se déroule ...

 

 

Historical role of the UK House of Lords Appellate Committee of the House of LordsEstablished1 November 1876Dissolved30 September 2009LocationPalace of Westminster, LondonComposition methodAppointed by Monarch on advice of Prime Minister.Chosen name recommended to PM by a selection commission.Authorized byConvention; Appellate Jurisdiction Act 1876Judge term lengthLife tenureSenior Law LordSecond Senior Law Lord This article is part of the series: Courts of England and WalesLaw of England and...

 

 

AO-62 Jenis Senapan serbu Negara asal  Uni Soviet Sejarah produksi Perancang Peter Andreevich Tkachev Tahun 1962 Spesifikasi Peluru 5,45 x 39 mm Kaliber 5,45mm Amunisi Magazen box isi 30 butir Alat bidik Bidikan besi AO-62 adalah senapan serbu kaliber 5,45 x 39 mm yang merupakan cikal bakal dimulainya pengembangan AN-94. Tidak akan ada recoil pada tiga butir peluru pertama yang ditembakan. Sistem yang dipakai mirip dengan Heckler & Koch G11 dan AN-94 yang muncul setelahnya...

Peta infrastruktur dan tata guna lahan di Komune Montceaux-lès-Meaux.  = Kawasan perkotaan  = Lahan subur  = Padang rumput  = Lahan pertanaman campuran  = Hutan  = Vegetasi perdu  = Lahan basah  = Anak sungaiMontceaux-lès-MeauxNegaraPrancisArondisemenMeauxKantonMeaux-SudAntarkomuneCommunauté d'agglomération du Pays de MeauxPemerintahan • Wali kota (2008-2014) Monique Lambinet • Populasi1574Kode INSEE/pos77300 / 2 Populat...

 

 

Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus. Cet article ne cite pas suffisamment ses sources (juin 2017). Si vous disposez d'ouvrages ou d'articles de référence ou si vous connaissez des sites web de qualité traitant du thème abordé ici, merci de compléter l'article en donnant les références utiles à sa vérifiabilité et en les liant à la section « Notes et références ». En pratique : Quelles sources sont attendues ? Comm...

 

 

Pemindahan cincin-Z dan makrodomain Ter dalam mutan ganda ΔslmA Δmin panjang dari sel E. coli. Fluoresensi cincin-Z diikuti menggunakan konstruk ZipA-GFP (hijau), sedangkan terminal kromosom diberi label dengan MatP-mCherry (merah). Gambar kontras fase (abu-abu) di-tindihkan untuk menggambarkan kontur sel. Bilah skala adalah 2 μm. Sitem Min adalah mekanisme yang terdiri dari tiga protein MincC, minD, dan minE yang digunakan oleh E. coli sebagai sarana penempatan septum sebelum pembelahan s...

本條目存在以下問題,請協助改善本條目或在討論頁針對議題發表看法。 此條目需要編修,以確保文法、用詞、语气、格式、標點等使用恰当。 (2013年8月6日)請按照校對指引,幫助编辑這個條目。(幫助、討論) 此條目剧情、虛構用語或人物介紹过长过细,需清理无关故事主轴的细节、用語和角色介紹。 (2020年10月6日)劇情、用語和人物介紹都只是用於了解故事主軸,輔助�...

 

 

1997 United Kingdom general election ← 1992 1 May 1997 2001 → ← outgoing memberselected members →All 659 seats to the House of Commons330 seats needed for a majorityOpinion pollsRegistered43,846,152[1]Turnout71.3% (6.4%)   First party Second party Third party   Leader Tony Blair John Major Paddy Ashdown Party Labour Conservative Liberal Democrats Leader since 21 July 1994 4 July 1995[n 1] 16 July 1988 Leader's...

 

 

Mexican-American boxer (born 1989) For the Guatemalan footballer, see Andy Ruiz (footballer). Andy Ruiz Jr.Ruiz Jr. in 2019BornAndrés Ponce Ruiz Jr. (1989-09-11) September 11, 1989 (age 34)Imperial, California, U.S.[1][2][3]Other namesDestroyerStatisticsWeight(s)HeavyweightHeight1.88 m (6 ft 2 in)[1]Reach74 in (188 cm)[1]StanceOrthodox Boxing recordTotal fights37Wins35Wins by KO22Losses2 Andrés Ponce Ruiz Jr. (born S...

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (يونيو 2018) كأس الجمهورية الصحراوية سنة التأسيس 2016 المنطقة  الجمهورية العربية الصحراوية الديمقراطية عدد الفرق 8 البطل الحالي وفاق بير لحلو(اللقب الأول) النادي الأكثر...

 

 

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (يوليو 2019) هذه المقالة تحتاج للمزيد من الوصلات للمقالات الأخرى للمساعدة في ترابط مقالات الموسوعة. فضلًا ساعد في تحسي...

 

 

Altare Entidad subnacional Escudo AltareLocalización de Altare en Italia Coordenadas 44°20′10″N 8°20′38″E / 44.3362, 8.344Capital sin etiquetarIdioma oficial ItalianoEntidad Comuna de Italia • País Italia • Región Liguria • Provincia SavonaMunicipios limítrofes Cairo Montenotte, Carcare, Mallare, Quiliano, SavonaSuperficie   • Total 11,74 km²Altitud   • Media 398 m s. n. m.Población (31-12-2008 (fuente Istat)) &...

Hoplitodromos dari amfora Pantathena bersosok hitam, 323–322 SM Hoplitodromos (bahasa Yunani Kuno: ὁπλιτόδρομος, translit. hoplitódromos, har. 'balap hoplites') adalah balap atletik bagian dari Olimpiade Kuno dan pesta olahraga Panhelenik lainnya. Cabang ini adalah balap lari terakhir yang ditambahkan ke Olimpiade, pertama kali muncul di Olimpiade ke-65 pada tahun 520 SM, dan secara tradisional merupakan lomba balap lari terakhir yang diadakan.[1]...

 

 

  لمعانٍ أخرى، طالع غوشين (توضيح). غوشين   الإحداثيات 38°24′06″N 85°34′58″W / 38.4017°N 85.5828°W / 38.4017; -85.5828   [1] تاريخ التأسيس 1849  تقسيم إداري  البلد الولايات المتحدة[2][3]  التقسيم الأعلى مقاطعة أولدهام  خصائص جغرافية  المساحة 517997 متر مربع0....