Supermanifold

In physics and mathematics, supermanifolds are generalizations of the manifold concept based on ideas coming from supersymmetry. Several definitions are in use, some of which are described below.

Informal definition

An informal definition is commonly used in physics textbooks and introductory lectures. It defines a supermanifold as a manifold with both bosonic and fermionic coordinates. Locally, it is composed of coordinate charts that make it look like a "flat", "Euclidean" superspace. These local coordinates are often denoted by

where x is the (real-number-valued) spacetime coordinate, and and are Grassmann-valued spatial "directions".

The physical interpretation of the Grassmann-valued coordinates are the subject of debate; explicit experimental searches for supersymmetry have not yielded any positive results. However, the use of Grassmann variables allow for the tremendous simplification of a number of important mathematical results. This includes, among other things a compact definition of functional integrals, the proper treatment of ghosts in BRST quantization, the cancellation of infinities in quantum field theory, Witten's work on the Atiyah-Singer index theorem, and more recent applications to mirror symmetry.

The use of Grassmann-valued coordinates has spawned the field of supermathematics, wherein large portions of geometry can be generalized to super-equivalents, including much of Riemannian geometry and most of the theory of Lie groups and Lie algebras (such as Lie superalgebras, etc.) However, issues remain, including the proper extension of de Rham cohomology to supermanifolds.

Definition

Three different definitions of supermanifolds are in use. One definition is as a sheaf over a ringed space; this is sometimes called the "algebro-geometric approach".[1] This approach has a mathematical elegance, but can be problematic in various calculations and intuitive understanding. A second approach can be called a "concrete approach",[1] as it is capable of simply and naturally generalizing a broad class of concepts from ordinary mathematics. It requires the use of an infinite number of supersymmetric generators in its definition; however, all but a finite number of these generators carry no content, as the concrete approach requires the use of a coarse topology that renders almost all of them equivalent. Surprisingly, these two definitions, one with a finite number of supersymmetric generators, and one with an infinite number of generators, are equivalent.[1][2]

A third approach describes a supermanifold as a base topos of a superpoint. This approach remains the topic of active research.[3]

Algebro-geometric: as a sheaf

Although supermanifolds are special cases of noncommutative manifolds, their local structure makes them better suited to study with the tools of standard differential geometry and locally ringed spaces.

A supermanifold M of dimension (p,q) is a topological space M with a sheaf of superalgebras, usually denoted OM or C(M), that is locally isomorphic to , where the latter is a Grassmann (Exterior) algebra on q generators.

A supermanifold M of dimension (1,1) is sometimes called a super-Riemann surface.

Historically, this approach is associated with Felix Berezin, Dimitry Leites, and Bertram Kostant.

Concrete: as a smooth manifold

A different definition describes a supermanifold in a fashion that is similar to that of a smooth manifold, except that the model space has been replaced by the model superspace .

To correctly define this, it is necessary to explain what and are. These are given as the even and odd real subspaces of the one-dimensional space of Grassmann numbers, which, by convention, are generated by a countably infinite number of anti-commuting variables: i.e. the one-dimensional space is given by where V is infinite-dimensional. An element z is termed real if ; real elements consisting of only an even number of Grassmann generators form the space of c-numbers, while real elements consisting of only an odd number of Grassmann generators form the space of a-numbers. Note that c-numbers commute, while a-numbers anti-commute. The spaces and are then defined as the p-fold and q-fold Cartesian products of and .[4]

Just as in the case of an ordinary manifold, the supermanifold is then defined as a collection of charts glued together with differentiable transition functions.[4] This definition in terms of charts requires that the transition functions have a smooth structure and a non-vanishing Jacobian. This can only be accomplished if the individual charts use a topology that is considerably coarser than the vector-space topology on the Grassmann algebra. This topology is obtained by projecting down to and then using the natural topology on that. The resulting topology is not Hausdorff, but may be termed "projectively Hausdorff".[4]

That this definition is equivalent to the first one is not at all obvious; however, it is the use of the coarse topology that makes it so, by rendering most of the "points" identical. That is, with the coarse topology is essentially isomorphic[1][2] to

Properties

Unlike a regular manifold, a supermanifold is not entirely composed of a set of points. Instead, one takes the dual point of view that the structure of a supermanifold M is contained in its sheaf OM of "smooth functions". In the dual point of view, an injective map corresponds to a surjection of sheaves, and a surjective map corresponds to an injection of sheaves.

An alternative approach to the dual point of view is to use the functor of points.

If M is a supermanifold of dimension (p,q), then the underlying space M inherits the structure of a differentiable manifold whose sheaf of smooth functions is , where is the ideal generated by all odd functions. Thus M is called the underlying space, or the body, of M. The quotient map corresponds to an injective map MM; thus M is a submanifold of M.

Examples

Batchelor's theorem

Batchelor's theorem states that every supermanifold is noncanonically isomorphic to a supermanifold of the form ΠE. The word "noncanonically" prevents one from concluding that supermanifolds are simply glorified vector bundles; although the functor Π maps surjectively onto the isomorphism classes of supermanifolds, it is not an equivalence of categories. It was published by Marjorie Batchelor in 1979.[5]

The proof of Batchelor's theorem relies in an essential way on the existence of a partition of unity, so it does not hold for complex or real-analytic supermanifolds.

Odd symplectic structures

Odd symplectic form

In many physical and geometric applications, a supermanifold comes equipped with an Grassmann-odd symplectic structure. All natural geometric objects on a supermanifold are graded. In particular, the bundle of two-forms is equipped with a grading. An odd symplectic form ω on a supermanifold is a closed, odd form, inducing a non-degenerate pairing on TM. Such a supermanifold is called a P-manifold. Its graded dimension is necessarily (n,n), because the odd symplectic form induces a pairing of odd and even variables. There is a version of the Darboux theorem for P-manifolds, which allows one to equip a P-manifold locally with a set of coordinates where the odd symplectic form ω is written as

where are even coordinates, and odd coordinates. (An odd symplectic form should not be confused with a Grassmann-even symplectic form on a supermanifold. In contrast, the Darboux version of an even symplectic form is

where are even coordinates, odd coordinates and are either +1 or −1.)

Antibracket

Given an odd symplectic 2-form ω one may define a Poisson bracket known as the antibracket of any two functions F and G on a supermanifold by

Here and are the right and left derivatives respectively and z are the coordinates of the supermanifold. Equipped with this bracket, the algebra of functions on a supermanifold becomes an antibracket algebra.

A coordinate transformation that preserves the antibracket is called a P-transformation. If the Berezinian of a P-transformation is equal to one then it is called an SP-transformation.

P and SP-manifolds

Using the Darboux theorem for odd symplectic forms one can show that P-manifolds are constructed from open sets of superspaces glued together by P-transformations. A manifold is said to be an SP-manifold if these transition functions can be chosen to be SP-transformations. Equivalently one may define an SP-manifold as a supermanifold with a nondegenerate odd 2-form ω and a density function ρ such that on each coordinate patch there exist Darboux coordinates in which ρ is identically equal to one.

Laplacian

One may define a Laplacian operator Δ on an SP-manifold as the operator which takes a function H to one half of the divergence of the corresponding Hamiltonian vector field. Explicitly one defines

In Darboux coordinates this definition reduces to

where xa and θa are even and odd coordinates such that

The Laplacian is odd and nilpotent

One may define the cohomology of functions H with respect to the Laplacian. In Geometry of Batalin-Vilkovisky quantization, Albert Schwarz has proven that the integral of a function H over a Lagrangian submanifold L depends only on the cohomology class of H and on the homology class of the body of L in the body of the ambient supermanifold.

SUSY

A pre-SUSY-structure on a supermanifold of dimension (n,m) is an odd m-dimensional distribution . With such a distribution one associates its Frobenius tensor (since P is odd, the skew-symmetric Frobenius tensor is a symmetric operation). If this tensor is non-degenerate, e.g. lies in an open orbit of , M is called a SUSY-manifold. SUSY-structure in dimension (1, k) is the same as odd contact structure.

See also

References

  1. ^ a b c d Alice Rogers, Supermanifolds: Theory and Applications, World Scientific, (2007) ISBN 978-981-3203-21-1 (See Chapter 1)
  2. ^ a b Rogers, Op. Cit. (See Chapter 8.)
  3. ^ supermanifold at the nLab
  4. ^ a b c Bryce DeWitt, Supermanifolds, (1984) Cambridge University Press ISBN 0521 42377 5 (See chapter 2.)
  5. ^ Batchelor, Marjorie (1979), "The structure of supermanifolds", Transactions of the American Mathematical Society, 253: 329–338, doi:10.2307/1998201, JSTOR 1998201, MR 0536951

Read other articles:

JiranGenre Drama Roman PembuatSoraya Intercine FilmsSutradaraAhmad YusufPemeran Titi Kamal Didi Riyadi Lucky Hakim Maeeva Amin Muhammad Fardhan Robby Shine Habibi Marchia Caroline Khalid Boularouz D'Ratu Akhmad Setyadi Penggubah lagu temaOpickLagu pembukaTafakur — OpickLagu penutupTafakur — OpickPenata musik Hans Kurniawan Joseph S. Djafar Rainne Wijaya Negara asalIndonesiaBahasa asliBahasa IndonesiaJmlh. musim1Jmlh. episode73 (daftar episode)ProduksiProduserRaam SorayaPengaturan k...

 

 

American historian (1909–2002)R. R. Palmer, circa 1953 Robert Roswell Palmer (January 11, 1909 – June 11, 2002) was an American historian at Princeton and Yale universities, who specialized in eighteenth-century France. His most influential work of scholarship, The Age of the Democratic Revolution: A Political History of Europe and America, 1760–1800 (1959 and 1964), examined the Atlantic Revolutions, an age of democratic revolution that swept Europe and the Americas between 1760 and 18...

 

 

2021 American resupply spaceflight to the ISS SpaceX CRS-23On 30 August 2021, CRS-23 approaches the ISS for an autonomous docking to the Harmony module's forward international docking adapter.NamesSpX-23Mission typeISS resupplyOperatorSpaceXCOSPAR ID2021-078A SATCAT no.49117Mission duration32 days, 19 hours, 42 minutes Spacecraft propertiesSpacecraftCargo Dragon C208ManufacturerSpaceXLaunch mass6,000 kg (13,000 lb)Payload mass2,207 kg (4,866 lb) Start o...

Pour les articles homonymes, voir Bassi. Agostino BassiPortraitBiographieNaissance 25 septembre 1773MairagoDécès 8 février 1856 (à 82 ans)LodiSépulture San Francesco Church (en)Nationalité ItalieDomicile Via Paolo Gorini 28 (d) (jusqu'en 1856)Formation Université de PavieActivités Botaniste, entomologisteAutres informationsInfluencé par Lazzaro SpallanzaniAbréviation en botanique A.BassiPlaque commémorativeVue de la sépulture.modifier - modifier le code - modifier Wikidata A...

 

 

اقتصاد اليابانعامالدولة اليابان عملة ين ياباني الإحصائياتالناتج الإجمالي 4.872 تريليون دولار أمريكي[1](2017) نمو الناتج الإجمالي  القائمة ... -4.6 نسبة مئوية[2](2020)0 نسبة مئوية[2](2019)0.6 نسبة مئوية[2](2018)1.7 نسبة مئوية[2](2017)0.8 نسبة مئوية[2](2016)1.6[2](2015)0.3 نسبة م�...

 

 

L'État français gère un stock de masques chirurgicaux et les masques de protection FFP2. Le maintien de ce stock est à l'origine d'un débat public lors de la pandémie de Covid-19 en France. Épidémie de grippe H1N1 en 2009 Article connexe : Grippe A (H1N1) de 2009-2010 en France. À la suite de l’épidémie de grippe aviaire (H5N1) de 2006, l'Établissement de préparation et de réponse aux urgences sanitaires est créé par la loi du 5 mars 2007 relative à la préparation du ...

Untuk kegunaan lain, lihat Cleopatra. Kleopatra IIIRatu MesirKelahiransek. 160 - 155 SMKematian101 SMAyahPtolemaios VI dari MesirIbuKleopatra II dari Mesir Kleopatra III (Yunani: Κλεοπάτρα, 161–101 SM) adalah ratu Mesir 142–101 SM. Dia dikenal pula sebagai Kleopatra Euergetis ketika dihubungkan dengan suaminya Ptolemaios VIII atau putranya Ptolemaios X. Dia disebut sebagai Kleopatra Philometor Soteira ketika dikaitkan dengan putra sulungnya Ptolemaios IX. Menurut Strabo dia k...

 

 

Ini adalah nama Korea; marganya adalah Ban. Ban Ki-moon반기문 (潘基文) Sekretaris Jenderal Perserikatan Bangsa-Bangsa ke-8Masa jabatan1 Januari 2007 – 31 Desember 2016WakilAsha-Rose MigiroPendahuluKofi AnnanPenggantiAntónio GuterresMenteri Urusan Luar Negeri dan Perdagangan ke-33Masa jabatan17 Januari 2004 – 20 November 2006PresidenRoh Moo-hyunPerdana MenteriGoh KunLee Hae ChanHan Duck-sooHan Myung-sookPendahuluYoon Young-kwanPenggantiSong Min-soon Informasi priba...

 

 

Species of tree Brosimum alicastrum Scientific classification Kingdom: Plantae Clade: Tracheophytes Clade: Angiosperms Clade: Eudicots Clade: Rosids Order: Rosales Family: Moraceae Genus: Brosimum Species: B. alicastrum Binomial name Brosimum alicastrumSw. Synonyms Alicastrum brownei Kuntze Brosimum uleanum Mildbr. Helicostylis bolivarensis Pittier Piratinera alicastrum (Sw.) Baill. Breadnut (Brosimum alicastrum), rawNutritional value per 100 g (3.5 oz)Energy908 kJ (217...

Fictional character in Sailor Moon The native form of this personal name is Aino Minako. This article uses Western name order when mentioning individuals. Fictional character Sailor VenusPretty Soldier Sailor Moon and Codename: Sailor V characterMinako in her Super Sailor Venus form as seen in Season 4 of the original anime.First appearanceCodename: Sailor V chapter #1: Sailor V is Born! (1991)Created byNaoko TakeuchiVoiced byJapanese: Rika Fukami Shizuka Itō (Sailor Moon Crystal) Englis...

 

 

Online multimedia archive of the Supreme Court of the US Oyez.orgType of siteDatabaseAvailable inEnglishOwnerIllinois Institute of TechnologyChicago-Kent College of LawCornell Law SchoolLegal Information InstituteJustiaCreated byJerry GoldmanURLoyez.orgCommercialNoRegistrationNoneCurrent statusactive The Oyez Project is an unofficial online multimedia archive website for the Supreme Court of the United States. It was initiated by the Illinois Institute of Technology's Chicago-K...

 

 

  「俄亥俄」重定向至此。关于其他用法,请见「俄亥俄 (消歧义)」。 俄亥俄州 美國联邦州State of Ohio 州旗州徽綽號:七葉果之州地图中高亮部分为俄亥俄州坐标:38°27'N-41°58'N, 80°32'W-84°49'W国家 美國加入聯邦1803年3月1日,在1953年8月7日追溯頒定(第17个加入联邦)首府哥倫布(及最大城市)政府 • 州长(英语:List of Governors of {{{Name}}}]]) •&...

Questa voce o sezione sull'argomento tennisti australiani non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Mary Bevis Hawton Nazionalità  Australia Tennis Carriera Singolare1 Vittorie/sconfitte Titoli vinti Miglior ranking Risultati nei tornei del Grande Slam  Australian Open -  Roland Garros -  Wimbledon -  US Open - Doppio1 Vit...

 

 

土库曼斯坦总统土库曼斯坦国徽土库曼斯坦总统旗現任谢尔达尔·别尔德穆哈梅多夫自2022年3月19日官邸阿什哈巴德总统府(Oguzkhan Presidential Palace)機關所在地阿什哈巴德任命者直接选举任期7年,可连选连任首任萨帕尔穆拉特·尼亚佐夫设立1991年10月27日 土库曼斯坦土库曼斯坦政府与政治 国家政府 土库曼斯坦宪法 国旗 国徽 国歌 立法機關(英语:National Council of Turkmenistan) ...

 

 

Ketua Konferensi Permusyawaratan Politik Rakyat TiongkokLambang Konferensi Permusyawaratan Politik Rakyat TiongkokPetahanaWang Yangsejak 14 Maret, 2018Ditunjuk olehVotingMasa jabatanLima tahunPejabat perdanaMao ZedongDibentuk1 Oktober, 1949 Ketua Konferensi Permusyawaratan Politik Rakyat Tiongkok (Hanzi sederhana: 中国人民政治协商会议全国委员会主席; Hanzi tradisional: 中國人民政治協商會議全國委員會主席; Pinyin: Zhōngguó Rénmín Zhèngzhì ...

Song 1000 OceansSingle by Tori Amosfrom the album To Venus and Back ReleasedSeptember 9, 1999 (US); January 10, 2000 (AUS)[1]RecordedMay 1999Length4:19LabelAtlanticSongwriter(s)Tori AmosProducer(s)Tori AmosTori Amos singles chronology Bliss (1999) 1000 Oceans (1999) Glory of the 80's (1999) 1000 Oceans is a song by Tori Amos, released as the second single from her 1999 album To Venus and Back. It reached number 22 on the Hot 100 Singles Sales, though it did not chart on the Hot 100.&#...

 

 

The topic of this article may not meet Wikipedia's general notability guideline. Please help to demonstrate the notability of the topic by citing reliable secondary sources that are independent of the topic and provide significant coverage of it beyond a mere trivial mention. If notability cannot be shown, the article is likely to be merged, redirected, or deleted.Find sources: Cilostamide – news · newspapers · books · scholar · JSTOR (January 2017) (L...

 

 

  此條目介紹的是澎湖縣鄉道的基本資料列表。关于澎湖縣鄉道的路網分佈,请见「澎湖縣鄉道」。 澎湖縣鄉道列表列出澎湖縣管轄境內的所有鄉道。澎湖縣鄉道目前由2號編至41號,含支線實際有36條[1][2]。 編號 路線名稱 起點交會道路或特徵 終點交會道路或特徵 里程(km) 途經鄉鎮 備註 澎2線 小門-竹灣 小門庄內道路(小門橋南端) 澎3線 3.645 西嶼鄉 澎...

GodzillaTokoh Godzilla (Waralaba)Godzilla di film Godzilla (1954)PenampilanperdanaGodzilla (1954)PenciptaTomoyuki TanakaPemeranEiji Tsuburaya Ishirō Honda Era Shōwa: Haruo Nakajima[1] Katsumi Tezuka[2] Hiroshi Sekida[3] Seiji Onaka[3] Shinji Takagi[4] Isao Zushi[5] Toru Kawai[5] Hanna-Barbera: Ted Cassidy (efek vokal)[6][7] Era Heisei: Kenpachiro Satsuma[8] Era Millennium: Tsutomu Kitagawa[9] Mizuho Yosh...

 

 

Guy Lengagne Fonctions Député français 12 juin 1997 – 19 juin 2007(10 ans et 7 jours) Élection 1er juin 1997 Réélection 16 juin 2002 Circonscription 5e du Pas-de-Calais Législature XIe et XIIe (Cinquième République) Groupe politique RCV (1997-2002)App. SOC (2002-2007) Prédécesseur Jean-Pierre Pont Successeur Frédéric Cuvillier 23 juin 1988 – 1er avril 1993(4 ans, 9 mois et 9 jours) Élection 12 juin 1988 Circonscription 5e du Pas-de-Calais Législatu...