Poisson bracket

Siméon Denis Poisson

In mathematics and classical mechanics, the Poisson bracket is an important binary operation in Hamiltonian mechanics, playing a central role in Hamilton's equations of motion, which govern the time evolution of a Hamiltonian dynamical system. The Poisson bracket also distinguishes a certain class of coordinate transformations, called canonical transformations, which map canonical coordinate systems into canonical coordinate systems. A "canonical coordinate system" consists of canonical position and momentum variables (below symbolized by and , respectively) that satisfy canonical Poisson bracket relations. The set of possible canonical transformations is always very rich. For instance, it is often possible to choose the Hamiltonian itself as one of the new canonical momentum coordinates.

In a more general sense, the Poisson bracket is used to define a Poisson algebra, of which the algebra of functions on a Poisson manifold is a special case. There are other general examples, as well: it occurs in the theory of Lie algebras, where the tensor algebra of a Lie algebra forms a Poisson algebra; a detailed construction of how this comes about is given in the universal enveloping algebra article. Quantum deformations of the universal enveloping algebra lead to the notion of quantum groups.

All of these objects are named in honor of Siméon Denis Poisson. He introduced the Poisson bracket in his 1809 treatise on mechanics.[1][2]

Properties

Given two functions f and g that depend on phase space and time, their Poisson bracket is another function that depends on phase space and time. The following rules hold for any three functions of phase space and time:

Anticommutativity
Bilinearity
Leibniz's rule
Jacobi identity

Also, if a function is constant over phase space (but may depend on time), then for any .

Definition in canonical coordinates

In canonical coordinates (also known as Darboux coordinates) on the phase space, given two functions and ,[Note 1] the Poisson bracket takes the form

The Poisson brackets of the canonical coordinates are where is the Kronecker delta.

Hamilton's equations of motion

Hamilton's equations of motion have an equivalent expression in terms of the Poisson bracket. This may be most directly demonstrated in an explicit coordinate frame. Suppose that is a function on the solution's trajectory-manifold. Then from the multivariable chain rule,

Further, one may take and to be solutions to Hamilton's equations; that is,

Then

Thus, the time evolution of a function on a symplectic manifold can be given as a one-parameter family of symplectomorphisms (i.e., canonical transformations, area-preserving diffeomorphisms), with the time being the parameter: Hamiltonian motion is a canonical transformation generated by the Hamiltonian. That is, Poisson brackets are preserved in it, so that any time in the solution to Hamilton's equations, can serve as the bracket coordinates. Poisson brackets are canonical invariants.

Dropping the coordinates,

The operator in the convective part of the derivative, , is sometimes referred to as the Liouvillian (see Liouville's theorem (Hamiltonian)).

Poisson matrix in canonical transformations

The concept of Poisson brackets can be expanded to that of matrices by defining the Poisson matrix.

Consider the following canonical transformation:Defining , the Poisson matrix is defined as , where is the symplectic matrix under the same conventions used to order the set of coordinates. It follows from the definition that:

The Poisson matrix satisfies the following known properties:

where the is known as a Lagrange matrix and whose elements correspond to Lagrange brackets. The last identity can also be stated as the following:Note that the summation here involves generalized coordinates as well as generalized momentum.

The invariance of Poisson bracket can be expressed as: , which directly leads to the symplectic condition: .[3]

Constants of motion

An integrable system will have constants of motion in addition to the energy. Such constants of motion will commute with the Hamiltonian under the Poisson bracket. Suppose some function is a constant of motion. This implies that if is a trajectory or solution to Hamilton's equations of motion, then along that trajectory. Then where, as above, the intermediate step follows by applying the equations of motion and we assume that does not explicitly depend on time. This equation is known as the Liouville equation. The content of Liouville's theorem is that the time evolution of a measure given by a distribution function is given by the above equation.

If the Poisson bracket of and vanishes (), then and are said to be in involution. In order for a Hamiltonian system to be completely integrable, independent constants of motion must be in mutual involution, where is the number of degrees of freedom.

Furthermore, according to Poisson's Theorem, if two quantities and are explicitly time independent () constants of motion, so is their Poisson bracket . This does not always supply a useful result, however, since the number of possible constants of motion is limited ( for a system with degrees of freedom), and so the result may be trivial (a constant, or a function of and .)

The Poisson bracket in coordinate-free language

Let be a symplectic manifold, that is, a manifold equipped with a symplectic form: a 2-form which is both closed (i.e., its exterior derivative vanishes) and non-degenerate. For example, in the treatment above, take to be and take

If is the interior product or contraction operation defined by , then non-degeneracy is equivalent to saying that for every one-form there is a unique vector field such that . Alternatively, . Then if is a smooth function on , the Hamiltonian vector field can be defined to be . It is easy to see that

The Poisson bracket on (M, ω) is a bilinear operation on differentiable functions, defined by ; the Poisson bracket of two functions on M is itself a function on M. The Poisson bracket is antisymmetric because:

Furthermore,

Here Xgf denotes the vector field Xg applied to the function f as a directional derivative, and denotes the (entirely equivalent) Lie derivative of the function f.

If α is an arbitrary one-form on M, the vector field Ωα generates (at least locally) a flow satisfying the boundary condition and the first-order differential equation

The will be symplectomorphisms (canonical transformations) for every t as a function of x if and only if ; when this is true, Ωα is called a symplectic vector field. Recalling Cartan's identity and dω = 0, it follows that . Therefore, Ωα is a symplectic vector field if and only if α is a closed form. Since , it follows that every Hamiltonian vector field Xf is a symplectic vector field, and that the Hamiltonian flow consists of canonical transformations. From (1) above, under the Hamiltonian flow XH,

This is a fundamental result in Hamiltonian mechanics, governing the time evolution of functions defined on phase space. As noted above, when {f,H} = 0, f is a constant of motion of the system. In addition, in canonical coordinates (with and ), Hamilton's equations for the time evolution of the system follow immediately from this formula.

It also follows from (1) that the Poisson bracket is a derivation; that is, it satisfies a non-commutative version of Leibniz's product rule:

The Poisson bracket is intimately connected to the Lie bracket of the Hamiltonian vector fields. Because the Lie derivative is a derivation,

Thus if v and u are symplectic, using , Cartan's identity, and the fact that is a closed form,

It follows that , so that

Thus, the Poisson bracket on functions corresponds to the Lie bracket of the associated Hamiltonian vector fields. We have also shown that the Lie bracket of two symplectic vector fields is a Hamiltonian vector field and hence is also symplectic. In the language of abstract algebra, the symplectic vector fields form a subalgebra of the Lie algebra of smooth vector fields on M, and the Hamiltonian vector fields form an ideal of this subalgebra. The symplectic vector fields are the Lie algebra of the (infinite-dimensional) Lie group of symplectomorphisms of M.

It is widely asserted that the Jacobi identity for the Poisson bracket, follows from the corresponding identity for the Lie bracket of vector fields, but this is true only up to a locally constant function. However, to prove the Jacobi identity for the Poisson bracket, it is sufficient to show that: where the operator on smooth functions on M is defined by and the bracket on the right-hand side is the commutator of operators, . By (1), the operator is equal to the operator Xg. The proof of the Jacobi identity follows from (3) because, up to the factor of -1, the Lie bracket of vector fields is just their commutator as differential operators.

The algebra of smooth functions on M, together with the Poisson bracket forms a Poisson algebra, because it is a Lie algebra under the Poisson bracket, which additionally satisfies Leibniz's rule (2). We have shown that every symplectic manifold is a Poisson manifold, that is a manifold with a "curly-bracket" operator on smooth functions such that the smooth functions form a Poisson algebra. However, not every Poisson manifold arises in this way, because Poisson manifolds allow for degeneracy which cannot arise in the symplectic case.

A result on conjugate momenta

Given a smooth vector field on the configuration space, let be its conjugate momentum. The conjugate momentum mapping is a Lie algebra anti-homomorphism from the Lie bracket to the Poisson bracket:

This important result is worth a short proof. Write a vector field at point in the configuration space as where is the local coordinate frame. The conjugate momentum to has the expression where the are the momentum functions conjugate to the coordinates. One then has, for a point in the phase space,

The above holds for all , giving the desired result.

Quantization

Poisson brackets deform to Moyal brackets upon quantization, that is, they generalize to a different Lie algebra, the Moyal algebra, or, equivalently in Hilbert space, quantum commutators. The Wigner-İnönü group contraction of these (the classical limit, ħ → 0) yields the above Lie algebra.

To state this more explicitly and precisely, the universal enveloping algebra of the Heisenberg algebra is the Weyl algebra (modulo the relation that the center be the unit). The Moyal product is then a special case of the star product on the algebra of symbols. An explicit definition of the algebra of symbols, and the star product is given in the article on the universal enveloping algebra.

See also

Remarks

  1. ^ means is a function of the independent variables: momentum, ; position, ; and time,

References

  1. ^ S. D. Poisson (1809)
  2. ^ C. M. Marle (2009)
  3. ^ Giacaglia, Giorgio E. O. (1972). Perturbation methods in non-linear systems. Applied mathematical sciences. New York Heidelberg: Springer. pp. 8–9. ISBN 978-3-540-90054-2.

Read other articles:

Aguk akhir abad ke-17, bergambar kepala Raja Charles I (memerintah 1625–1649) Aguk adalah liontin yang terbuka untuk memperlihatkan ruang yang digunakan untuk menyimpan foto atau benda kecil lainnya seperti seikat rambut. Aguk biasanya diberikan kepada orang yang dicintai pada hari libur seperti Hari Valentine dan acara-acara seperti pembaptisan, pernikahan dan, yang paling penting selama Zaman Victoria, pemakaman . Secara historis, mereka sering dibuka untuk memperlihatkan miniatur potret ...

 

Isola dei CappucciniGeografia fisicaLocalizzazioneMar Tirreno Coordinate41°09′11.88″N 9°30′06.01″E / 41.1533°N 9.50167°E41.1533; 9.50167Coordinate: 41°09′11.88″N 9°30′06.01″E / 41.1533°N 9.50167°E41.1533; 9.50167 ArcipelagoArcipelago di La Maddalena Superficie0,03 km² Altitudine massima23 m s.l.m. Geografia politicaStato Italia Regione Sardegna Provincia Sassari Comune La Maddalena CartografiaIsola dei Capp...

 

التَرْتِيبِ الإداري في جُمهُوريَّة ألمانيا الاِتّحاديّة منطقة إدارية ألمانية (بالألمانية: Regierungsbezirk)، وهو تقسيم لبعض الولايات الاتحادية (Bundesländer) يرادفه مصطلح «محافظة» في بعد الدول العربية.[1] والمناطق الإدارية تقسم هي الأخرى إلى أقضية (kreise) وتكون إما أقضية ريفية (landkreise...

Pour les articles homonymes, voir CDR. Logo du CD-R. Verso d'un CD-R. Un disque compact enregistrable (ou CD-R[1] pour Compact Disc Recordable[2]) est un disque compact de taille standard pour un support optique (120 mm de diamètre[3]) qui peut être enregistré sans possibilité réelle de revenir sur les données écrites. Il s'agit d'une technologie intermédiaire entre le CD-ROM non enregistrable et le disque compact réinscriptible (CD-RW). Histoire Le CD-R est conçu le 13 juin 1...

 

Part of a series onBritish law Acts of Parliament of the United Kingdom Year      1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 ...

 

莎拉·阿什頓-西里洛2023年8月,阿什頓-西里洛穿著軍服出生 (1977-07-09) 1977年7月9日(46歲) 美國佛羅里達州国籍 美國别名莎拉·阿什頓(Sarah Ashton)莎拉·西里洛(Sarah Cirillo)金髮女郎(Blonde)职业記者、活動家、政治活動家和候選人、軍醫活跃时期2020年—雇主內華達州共和黨候選人(2020年)《Political.tips》(2020年—)《LGBTQ國度》(2022年3月—2022年10月)烏克蘭媒�...

  لمعانٍ أخرى، طالع هنري جونز (توضيح). هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (فبراير 2017) هنري جونز معلومات شخصية تاريخ الميلاد سنة 1790   تاريخ الوفاة 21 يناير 1860 (69–70 سنة)  الجنسية كندا الحياة العمل�...

 

Charlie HaasCharles Haas pada tahun 2009Nama lahirCharles Doyle Haas IILahir27 Maret 1972 (umur 52)Edmond, Oklahoma, AmerikaTempat tinggalFrisco, Texas, United StatesPasanganJackie Gayda ​(m. 2005)​Anak4KeluargaRuss Haas (kakak)Hugh Devore (kakek)Karier gulat profesionalNama ringCharlie HaasR.C. HaasTinggi6 ft 2 in (1,88 m)Berat249 pon (113 kg)[1]Asal dariDallas, TexasDilatih olehJim KettnerJohn SmithMike Sharpe>Vince Sylva...

 

American ice hockey player (born 2002) Ice hockey player Matthew KniesBorn (2002-10-17) October 17, 2002 (age 21)Phoenix, Arizona, U.S.Height 6 ft 3 in (191 cm)Weight 217 lb (98 kg; 15 st 7 lb)Position ForwardShoots LeftNHL team Toronto Maple LeafsNational team  United StatesNHL draft 57th overall, 2021Toronto Maple LeafsPlaying career 2023–present Matthew Knies (/naɪz/ NYZE;[1] born October 17, 2002) is an American professional ice ...

Municipality in Centro, PortugalPenicheMunicipality FlagCoat of armsCoordinates: 39°21′N 9°22′W / 39.350°N 9.367°W / 39.350; -9.367Country PortugalRegionCentroIntermunic. comm.OesteDistrictLeiriaParishes4Government • PresidentHenrique Bertino (GCEPP)Area • Total77.55 km2 (29.94 sq mi)Population (2011) • Total26,431 • Density340/km2 (880/sq mi)Time zoneUTC±00:00 (WET) • Su...

 

Classe HanTipo 091Il sottomarino della classe Han con numerale 405, ultimo della serie.Descrizione generale Tipo091 ClasseHan CantiereHuludao Shipyard Completamento5 Entrata in servizio1974 Caratteristiche generaliDislocamentoin immersione: 4572 t in emersione: 5639 t Lunghezza90 m Larghezza10 m Pescaggio7,4 m Profondità operativa300 m Velocitàin immersione: 25 nodi (46,3 km/h) in emersione: 12 nodi (22,22 km/h) Equipaggio75 ArmamentoSiluri6...

 

Arvid KubbelFull nameArvid Ivanovich Kubbel(Russian: Арвид Иванович Куббель)CountryRussian Empire, Soviet UnionBorn(1889-09-12)12 September 1889Saint Petersburg, Russian EmpireDied11 January 1938(1938-01-11) (aged 48)Leningrad, Russian SFSR, USSR Arvid Kubbel (12 September 1889 – 11 January 1938) was a chess player and composer of chess problems and endgame studies from the Soviet Union.[1] He was a brother of Evgeny and Leonid Kubbel (one of the best-k...

GT World Challenge AsiaKategoriGrand tourer mobil sportNegara atau daerahInternasionalMusim pertama2017Juara pembalap Roelof BruinsJuara tim Absolute RacingSitus webwww.gt-world-challenge-asia.com Musim saat ini GT World Challenge Asia (sebelumnya Blancpain GT Series Asia dan Blancpain GT World Challenge Asia) adalah sebuah seri balapan GT, dipromosikan oleh Organisasi Stéphane Ratel dan digelar oleh Team Asia One GT Management. Juara Pembalap Tahun GT3 Keseluruhan GT3 Silver GT3 Pro-Am GT3 ...

 

Forum de Paris sur la paix Situation Création 9 mars 2018 Siège Paris Langue Français et anglais Organisation Président Pascal Lamy Directeur général Justin Vaïsse Directrice générale adjointe Fabienne Hara Secrétaire général Olivier Yviquel Site web https://parispeaceforum.org/fr/ modifier  Le Forum de Paris sur la paix est une manifestation internationale portant sur les questions de gouvernance mondiale et de multilatéralisme, tenue chaque année à Paris, en France[1]. ...

 

Ruling party of Burma from 1962 to 1988 This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Burma Socialist Programme Party – news · newspapers · books · scholar · JSTOR (June 2012) (Learn how and when to remove this message) Burma Socialist Programme Party မြန်မာ့ဆိုရှယ်လစ်လ�...

Borough of Saguenay, Quebec, Canada This article is about the city in Quebec. For the submarine, see HMCS Chicoutimi (SSK 879). Borough in Quebec, CanadaChicoutimiBoroughDowntown Chicoutimi Coat of armsNicknames: Queen of the North, Saguenay Queen, Saguenay metropolis, Saguenay kingdom capital, Conventions city(Reine du Nord, Reine du Saguenay, Métropole du Saguenay, Capitale du royaume du Saguenay, Ville des congrès)Coordinates: 48°25′40″N 71°03′33″W / 48.427...

 

Pour les articles homonymes, voir Marschall. Wilhelm MarschallWilhelm Marschall en 1934BiographieNaissance 30 septembre 1886AugsbourgDécès 20 mars 1976 (à 89 ans)MöllnNationalité allemandeAllégeance Troisième ReichActivités Officier de marine, sous-marinierPériode d'activité À partir de 1906Autres informationsGrade militaire Amiral généralConflits Première Guerre mondialeGuerre d'EspagneSeconde Guerre mondialeDistinctions Liste détailléeOrdre Pour le MériteOrdre de la C...

 

Form of democracy focusing on deliberation and informed decision-making Part of the Politics seriesDemocracy HistoryTheoryIndices Types Anticipatory Athenian Cellular Consensus Conservative Cosmopolitan Defensive Deliberative Direct Economic Electronic Empowered Ethnic Grassroots Guided Hybrid regime Inclusive Industrial Jacksonian Jeffersonian Liberal / Illiberal Liquid Majoritarian Media Monitory Multiparty Non-partisan Oral Participatory Pluralist Popular Procedural Radical Representative ...

この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。 出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方)出典検索?: 100メートル競走 – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL (2024年7月) 2012年ロンドンオリンピックの陸上競技、男...

 

Disambiguazione – Se stai cercando altri significati, vedi Arcobaleno (disambigua). Arcobaleno doppio In fisica dell'atmosfera e meteorologia, l'arcobaleno è un fenomeno atmosferico che produce uno spettro continuo di luce nel cielo quando la luce del Sole attraversa le gocce d'acqua rimaste in sospensione dopo un temporale, o presso una cascata o una fontana.[1] Lo spettro elettromagnetico dell'arcobaleno include lunghezze d'onda sia visibili sia non visibili all'occhio umano[...