Seiberg–Witten theory

In theoretical physics, Seiberg–Witten theory is an supersymmetric gauge theory with an exact low-energy effective action (for massless degrees of freedom), of which the kinetic part coincides with the Kähler potential of the moduli space of vacua. Before taking the low-energy effective action, the theory is known as supersymmetric Yang–Mills theory, as the field content is a single vector supermultiplet, analogous to the field content of Yang–Mills theory being a single vector gauge field (in particle theory language) or connection (in geometric language).

The theory was studied in detail by Nathan Seiberg and Edward Witten (Seiberg & Witten 1994).

Seiberg–Witten curves

In general, effective Lagrangians of supersymmetric gauge theories are largely determined by their holomorphic (really, meromorphic) properties and their behavior near the singularities. In gauge theory with extended supersymmetry, the moduli space of vacua is a special Kähler manifold and its Kähler potential is constrained by above conditions.

In the original approach,[1][2] by Seiberg and Witten, holomorphy and electric-magnetic duality constraints are strong enough to almost uniquely constrain the prepotential (a holomorphic function which defines the theory), and therefore the metric of the moduli space of vacua, for theories with SU(2) gauge group.

More generally, consider the example with gauge group SU(n). The classical potential is

where is a scalar field appearing in an expansion of superfields in the theory. The potential must vanish on the moduli space of vacua by definition, but the need not. The vacuum expectation value of can be gauge rotated into the Cartan subalgebra, making it a traceless diagonal complex matrix .

Because the fields no longer have vanishing vacuum expectation value, other fields become massive due to the Higgs mechanism (spontaneous symmetry breaking). They are integrated out in order to find the effective U(1) gauge theory. Its two-derivative, four-fermions low-energy action is given by a Lagrangian which can be expressed in terms of a single holomorphic function on superspace as follows:

where

and is a chiral superfield on superspace which fits inside the chiral multiplet .

The first term is a perturbative loop calculation and the second is the instanton part where labels fixed instanton numbers. In theories whose gauge groups are products of unitary groups, can be computed exactly using localization[3] and the limit shape techniques.[4]

The Kähler potential is the kinetic part of the low energy action, and explicitly is written in terms of as

From we can get the mass of the BPS particles.

One way to interpret this is that these variables and its dual can be expressed as periods of a meromorphic differential on a Riemann surface called the Seiberg–Witten curve.

N = 2 supersymmetric Yang–Mills theory

Before the low energy, or infrared, limit is taken, the action can be given in terms of a Lagrangian over superspace with field content , which is a single vector/chiral superfield in the adjoint representation of the gauge group, and a holomorphic function of called the prepotential. Then the Lagrangian is given by where are coordinates for the spinor directions of superspace.[5] Once the low energy limit is taken, the superfield is typically labelled by instead.

The so called minimal theory is given by a specific choice of , where is the complex coupling constant.

The minimal theory can be written on Minkowski spacetime as with making up the chiral multiplet.

Geometry of the moduli space

For this section fix the gauge group as . A low-energy vacuum solution is an vector superfield solving the equations of motion of the low-energy Lagrangian, for which the scalar part has vanishing potential, which as mentioned earlier holds if (which exactly means is a normal operator, and therefore diagonalizable). The scalar transforms in the adjoint, that is, it can be identified as an element of , the complexification of . Thus is traceless and diagonalizable so can be gauge rotated to (is in the conjugacy class of) a matrix of the form (where is the third Pauli matrix) for . However, and give conjugate matrices (corresponding to the fact the Weyl group of is ) so both label the same vacuum. Thus the gauge invariant quantity labelling inequivalent vacua is . The (classical) moduli space of vacua is a one-dimensional complex manifold (Riemann surface) parametrized by , although the Kähler metric is given in terms of as

where . This is not invariant under an arbitrary change of coordinates, but due to symmetry in and , switching to local coordinate gives a metric similar to the final form but with a different harmonic function replacing . The switching of the two coordinates can be interpreted as an instance of electric-magnetic duality (Seiberg & Witten 1994).

Under a minimal assumption of assuming there are only three singularities in the moduli space at and , with prescribed monodromy data at each point derived from quantum field theoretic arguments, the moduli space was found to be , where is the hyperbolic half-plane and is the second principal congruence subgroup, the subgroup of matrices congruent to 1 mod 2, generated by This space is a six-fold cover of the fundamental domain of the modular group and admits an explicit description as parametrizing a space of elliptic curves given by the vanishing of which are the Seiberg–Witten curves. The curve becomes singular precisely when or .

Graph of metric function on moduli space parametrized by , with evident singularities at . The function is defined using the complete elliptic integral of the first kind (Hunter-Jones 2012).

Monopole condensation and confinement

The theory exhibits physical phenomena involving and linking magnetic monopoles, confinement, an attained mass gap and strong-weak duality, described in section 5.6 of Seiberg and Witten (1994). The study of these physical phenomena also motivated the theory of Seiberg–Witten invariants.

The low-energy action is described by the chiral multiplet with gauge group , the residual unbroken gauge from the original symmetry. This description is weakly coupled for large , but strongly coupled for small . However, at the strongly coupled point the theory admits a dual description which is weakly coupled. The dual theory has different field content, with two chiral superfields , and gauge field the dual photon , with a potential that gives equations of motion which are Witten's monopole equations, also known as the Seiberg–Witten equations at the critical points where the monopoles become massless.

In the context of Seiberg–Witten invariants, one can view Donaldson invariants as coming from a twist of the original theory at giving a topological field theory. On the other hand, Seiberg–Witten invariants come from twisting the dual theory at . In theory, such invariants should receive contributions from all finite but in fact can be localized to the two critical points, and topological invariants can be read off from solution spaces to the monopole equations.[6]

Relation to integrable systems

The special Kähler geometry on the moduli space of vacua in Seiberg–Witten theory can be identified with the geometry of the base of complex completely integrable system. The total phase of this complex completely integrable system can be identified with the moduli space of vacua of the 4d theory compactified on a circle. The relation between Seiberg–Witten theory and integrable systems has been reviewed by Eric D'Hoker and D. H. Phong.[7] See Hitchin system.

Seiberg–Witten prepotential via instanton counting

Using supersymmetric localisation techniques, one can explicitly determine the instanton partition function of super Yang–Mills theory. The Seiberg–Witten prepotential can then be extracted using the localization approach[8] of Nikita Nekrasov. It arises in the flat space limit , , of the partition function of the theory subject to the so-called -background. The latter is a specific background of four dimensional supergravity. It can be engineered, formally by lifting the super Yang–Mills theory to six dimensions, then compactifying on 2-torus, while twisting the four dimensional spacetime around the two non-contractible cycles. In addition, one twists fermions so as to produce covariantly constant spinors generating unbroken supersymmetries. The two parameters , of the -background correspond to the angles of the spacetime rotation.

In Ω-background, all the non-zero modes can be integrated out, so the path integral with the boundary condition at can be expressed as a sum over instanton number of the products and ratios of fermionic and bosonic determinants, producing the so-called Nekrasov partition function. In the limit where , approach 0, this sum is dominated by a unique saddle point. On the other hand, when , approach 0,

holds.

See also

References

  1. ^ Seiberg, Nathan; Witten, Edward (1994). "Electric - magnetic duality, monopole condensation, and confinement in N=2 supersymmetric Yang-Mills theory". Nucl. Phys. B. 426 (1): 19–52. arXiv:hep-th/9407087. Bibcode:1994NuPhB.426...19S. doi:10.1016/0550-3213(94)90124-4. S2CID 14361074.
  2. ^ Seiberg, Nathan; Witten, Edward (1994). "Monopoles, duality and chiral symmetry breaking in N=2 supersymmetric QCD". Nucl. Phys. B. 431 (3): 484–550. arXiv:hep-th/9408099. Bibcode:1994NuPhB.431..484S. doi:10.1016/0550-3213(94)90214-3. S2CID 17584951.
  3. ^ Nekrasov, Nikita (2004). "Seiberg-Witten Prepotential from Instanton Counting". Advances in Theoretical and Mathematical Physics. 7 (5): 831–864. arXiv:hep-th/0206161. doi:10.4310/ATMP.2003.v7.n5.a4. S2CID 2285041.
  4. ^ Nekrasov, Nikita; Okounkov, Andrei (2003). "Seiberg-Witten theory and random partitions". Prog. Math. Progress in Mathematics. 244: 525–596. arXiv:hep-th/0306238. Bibcode:2003hep.th....6238N. doi:10.1007/0-8176-4467-9_15. ISBN 978-0-8176-4076-7. S2CID 14329429.
  5. ^ Seiberg, Nathan (May 1988). "Supersymmetry and non-perturbative beta functions". Physics Letters B. 206 (1): 75–80. doi:10.1016/0370-2693(88)91265-8.
  6. ^ Witten, Edward (1994). "Monopoles and four-manifolds". Mathematical Research Letters. 1 (6): 769–796. arXiv:hep-th/9411102. doi:10.4310/MRL.1994.v1.n6.a13.
  7. ^ D'Hoker, Eric; Phong, D. H. (1999-12-29). "Lectures on Supersymmetric Yang-Mills Theory and Integrable Systems". Theoretical Physics at the End of the Twentieth Century. pp. 1–125. arXiv:hep-th/9912271. Bibcode:1999hep.th...12271D. doi:10.1007/978-1-4757-3671-7_1. ISBN 978-1-4419-2948-8. S2CID 117202391.
  8. ^ Nekrasov, Nikita (2004). "Seiberg-Witten Prepotential from Instanton Counting". Advances in Theoretical and Mathematical Physics. 7 (5): 831–864. arXiv:hep-th/0206161. doi:10.4310/ATMP.2003.v7.n5.a4. S2CID 2285041.

Read other articles:

Halaman ini berisi artikel tentang naga dalam agama Hindu dan Buddha. Untuk naga secara umum, lihat Naga. Naga (mitologi India)Patung nāga di Bhuvanesvar, India.Makhluk mitologisNama lainNāgī atau Nāginī (nāga betina)KelompokMakhluk legendaSubkelompokDewa air, dewa penuntun, dewa ularAsalMitologiHindu, Buddha, dan JainaNegaraIndia, NepalDaerahAsia Selatan dan Asia TenggaraHabitatDunia bawah tanah, danau, sungai, kolam, hutan larangan dan gua Dalam kepercayaan Hindu, Buddha dan Jaina, N�...

 

 

Cerita Putih Abu-AbuGenre Drama Roman SkenarioFiona MahdalenaCeritaFiona MahdalenaSutradara Rully Manna Anika Marani Pemeran Kaneishia Yusuf Fadi Alaydrus Alzi Markers Zara Leola Dinda Mahira Penggubah lagu tema Lasti Puspita Risky Ares Lagu pembukaPutih Abu-Abu oleh Kaneishia YusufLagu penutupPutih Abu-Abu oleh Kaneishia YusufPenata musikSamuel PratamaNegara asalIndonesiaBahasa asliBahasa IndonesiaJmlh. musim1Jmlh. episode25ProduksiProduser eksekutif Wicky V. Olindo Hendri Suvaco Moni...

 

 

Daftar ini belum tentu lengkap. Anda dapat membantu Wikipedia dengan mengembangkannya. Wakil Wali Kota BandungPetahanaLowongsejak 10 Desember 2021Pemerintah Kota BandungMasa jabatan5 tahun dan dapat dipilih kembali untuk satu kali masa jabatanDibentuk1926; 98 tahun lalu (1926)Pejabat pertamaBiezeveld (Hindia Belanda, 1926)Situs webbandung.go.id Berikut adalah daftar Wakil Wali Kota Bandung secara definitif sejak tahun 1926 di masa Hindia Belanda hingga saat ini di bawah Pemerintah R...

Gambaran Program Delta Delta Plan adalah suatu perencanaan untuk menyelamatkan bagian barat Belanda dari ancaman air pasang.[1] Proyek raksasa ini dimulai dengan menutup Zuiderzee dengan tanggul sepanjang 30 km.[1] Penutupan laut tersebut merupakan proyek terbesar yang pernah dilakukan di bidang pengeringan laut yang digunakan sebagai tanah pertanian dan peternakan dengan biaya 3000 juta gulden. [1] Cara yang digunakan untuk membendung laut adalah dengan memakai k...

 

 

Questa voce sull'argomento calciatori brasiliani è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Renato Renato con la maglia del Siviglia nel 2010 Nazionalità  Brasile Altezza 177 cm Peso 71 kg Calcio Ruolo Centrocampista Termine carriera 3 dicembre 2018 Carriera Giovanili -1997 Guarani Squadre di club1 1998-1999 Guarani37 (5)2000-2004 Santos127 (12)2004-2011 Siviglia204 (26)2...

 

 

Female monsters in Greek mythology This article is about the Greek mythological monsters. For other uses, see Gorgon (disambiguation). Running Gorgon; amphora, Munich, Staatliche Antikensammlungen 2312 (c. 490 BC)[1] The Gorgons (/ˈɡɔːrɡənz/ GOR-gənz; Ancient Greek: Γοργώνες), in Greek mythology, are three female monsters, Stheno, Euryale, and Medusa, sisters who were able to turn anyone who looked at them to stone. Euryale and Stheno were immortal, but Medusa was not a...

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (ديسمبر 2018) كوبي وبارتالي 2015 السلسلة طواف أوروبا 2015 التاريخ 26–29 مارس 2015 عدد المراحل 5 المسافة 595.4 كم الزمن 14hr 31 دقيقة 4...

 

 

本條目存在以下問題,請協助改善本條目或在討論頁針對議題發表看法。 此條目需要編修,以確保文法、用詞、语气、格式、標點等使用恰当。 (2013年8月6日)請按照校對指引,幫助编辑這個條目。(幫助、討論) 此條目剧情、虛構用語或人物介紹过长过细,需清理无关故事主轴的细节、用語和角色介紹。 (2020年10月6日)劇情、用語和人物介紹都只是用於了解故事主軸,輔助�...

 

 

دورة النيتروجين هي دوران النيتروجين بين الجو والتربة والماء ونباتات الأرض وحيواناتها.[1][2][3] وتحتاج كل الكائنات الحية إلي النيتروجين، ولكن أغلب الأحياء لاتستطيع استعمال النيتروجين الغازي N2 والذي يشكل 78% من الهواء،[4] إذ يجب أن تحصل على نيتروجين متحد مع عنا�...

Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus. Cet article doit être actualisé (septembre 2021). Des passages de cet article ne sont plus d’actualité ou annoncent des événements désormais passés. Améliorez-le ou discutez-en. Vous pouvez également préciser les sections à actualiser en utilisant {{section à actualiser}}. Fox Networks Group Création 1993 Fondateurs Rupert Murdoch Siège social Los Angeles États-Unis Actionnaires The Walt Dis...

 

 

Cultural region of the United States For other uses, see Cotton Belt (disambiguation). The Cotton Belt region in dark red, and cotton growing areas in pink. The Cotton Belt is a region of the Southern United States where cotton was the predominant cash crop from the late 18th century into the 20th century.[1] Before the invention of the cotton gin in 1793, cotton production was limited to coastal plain areas of South Carolina and Georgia,[1] and, on a smaller scale, along the ...

 

 

Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus. Certaines informations figurant dans cet article ou cette section devraient être mieux reliées aux sources mentionnées dans les sections « Bibliographie », « Sources » ou « Liens externes » (décembre 2023). Vous pouvez améliorer la vérifiabilité en associant ces informations à des références à l'aide d'appels de notes. Cet article est une ébauche concernant la méde...

American poet, author, and civil rights activist (1928–2014) Angelou redirects here. For the English folk rock band, see Angelou (band). For the crater on Mercury, see Angelou (crater). Maya AngelouAngelou in 1993BornMarguerite Annie Johnson(1928-04-04)April 4, 1928St. Louis, Missouri, U.S.DiedMay 28, 2014(2014-05-28) (aged 86)Winston-Salem, North Carolina, U.S.OccupationWriterpoetcivil rights activistPeriod1951–2014SubjectMemoirpoetrySpouses Tosh Angelos ​ ​(...

 

 

American politician and diplomat (1888–1959) John Dulles redirects here. For his grandfather, the American Presbyterian minister and author, see John Welsh Dulles. For his son, the American scholar of Brazilian history, see John W. F. Dulles. John Foster DullesDulles, c. 194952nd United States Secretary of StateIn officeJanuary 26, 1953 – April 22, 1959PresidentDwight D. EisenhowerPreceded byDean AchesonSucceeded byChristian HerterUnited States Senatorfrom New YorkIn officeJu...

 

 

Province of Pakistan Province in PakistanKhyber Pakhtunkhwa خیبر پختونخوا (Urdu)خېبر پښتونخوا (Pashto)ProvinceProvince of Khyber PakhtunkhwaSwat RiverBab-e-KhyberMahabat Khan MosqueKalam ValleyBahrainLake Saiful MulukKaghan Valley FlagSealLocation of Khyber Pakhtunkhwa within PakistanCoordinates: 34°00′N 71°19′E / 34.00°N 71.32°E / 34.00; 71.32Country PakistanEstablished(as NWFP)9 November 1901Provincial status1935Accession to Pakis...

Italian composer (1567–1643) Monteverdi redirects here. For other uses, see Monteverdi (disambiguation). Monteverdi by Bernardo Strozzi (c. 1630) Claudio Giovanni Antonio Monteverdi[n 1] (baptized 15 May 1567 – 29 November 1643) was an Italian composer, choirmaster and string player. A composer of both secular and sacred music, and a pioneer in the development of opera, he is considered a crucial transitional figure between the Renaissance and Baroque periods of music histor...

 

 

South Ayrshire Council election 2017 South Ayrshire Council election ← 2012 4 May 2017 (2017-05-04) 2022 → All 28 seats to South Ayrshire Council15 seats needed for a majorityRegistered89,490Turnout52.1%   First party Second party   Con Leader Martin Dowey Allan Dorans Party Conservative SNP Leader's seat Ayr West Ayr West(defeated) Last election 10 seats, 31.5% 9 seats, 29.3% Seats before 10 9 Seats won 12 9 Seat change ...

 

 

German Catholic church historian and bishop This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: Heinrich Brück – news · newspapers · books · scholar · JSTOR (January 2024) Heinrich Brück Heinrich Brück (25 October 1831, Bingen – 4 November 1903) was a German Catholic church historian, and Bishop o...

Championnat sud-américain de 1949 Généralités Sport Football Organisateur(s) CONMEBOL Édition 21e Lieu(x) Brésil Date du 3 avril 1949au 11 mai 1949 Participants 8 Matchs joués 29 Affluence 717 000 spectateurs Site(s) Rio de Janeiro, São Paulo, Santos et Belo Horizonte Palmarès Tenant du titre Argentine Vainqueur Brésil Deuxième Paraguay Troisième Pérou Buts 135 (4,7 par match) Meilleur(s) buteur(s) Jair (9) Navigation Équateur 1947 Pérou 1953 modifier Le Championnat sud-a...

 

 

Questa voce sull'argomento stagioni delle società calcistiche italiane è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Voce principale: Casertana Football Club. Casertana Football ClubStagione 1996-1997Sport calcio Squadra Casertana Allenatore Claudio Tobia poi Carlo Orlandi Presidente Salvatore Tufano Serie C215º posto nel girone C. Retrocessa nel Campionato Nazionale Dilettanti Maggiori presen...