Superalgebra

In mathematics and theoretical physics, a superalgebra is a Z2-graded algebra.[1] That is, it is an algebra over a commutative ring or field with a decomposition into "even" and "odd" pieces and a multiplication operator that respects the grading.

The prefix super- comes from the theory of supersymmetry in theoretical physics. Superalgebras and their representations, supermodules, provide an algebraic framework for formulating supersymmetry. The study of such objects is sometimes called super linear algebra. Superalgebras also play an important role in related field of supergeometry where they enter into the definitions of graded manifolds, supermanifolds and superschemes.

Formal definition

Let K be a commutative ring. In most applications, K is a field of characteristic 0, such as R or C.

A superalgebra over K is a K-module A with a direct sum decomposition

together with a bilinear multiplication A × AA such that

where the subscripts are read modulo 2, i.e. they are thought of as elements of Z2.

A superring, or Z2-graded ring, is a superalgebra over the ring of integers Z.

The elements of each of the Ai are said to be homogeneous. The parity of a homogeneous element x, denoted by |x|, is 0 or 1 according to whether it is in A0 or A1. Elements of parity 0 are said to be even and those of parity 1 to be odd. If x and y are both homogeneous then so is the product xy and .

An associative superalgebra is one whose multiplication is associative and a unital superalgebra is one with a multiplicative identity element. The identity element in a unital superalgebra is necessarily even. Unless otherwise specified, all superalgebras in this article are assumed to be associative and unital.

A commutative superalgebra (or supercommutative algebra) is one which satisfies a graded version of commutativity. Specifically, A is commutative if

for all homogeneous elements x and y of A. There are superalgebras that are commutative in the ordinary sense, but not in the superalgebra sense. For this reason, commutative superalgebras are often called supercommutative in order to avoid confusion.[2]

Sign conventions

When the Z2 grading arises as a "rollup" of a Z- or N-graded algebra into even and odd components, then two distinct (but essentially equivalent) sign conventions can be found in the literature.[3] These can be called the "cohomological sign convention" and the "super sign convention". They differ in how the antipode (exchange of two elements) behaves. In the first case, one has an exchange map

where is the degree (Z- or N-grading) of and the parity. Likewise, is the degree of and with parity This convention is commonly seen in conventional mathematical settings, such as differential geometry and differential topology. The other convention is to take

with the parities given as and the parity. This is more often seen in physics texts, and requires a parity functor to be judiciously employed to track isomorphisms. Detailed arguments are provided by Pierre Deligne[3]

Examples

  • Any algebra over a commutative ring K may be regarded as a purely even superalgebra over K; that is, by taking A1 to be trivial.
  • Any Z- or N-graded algebra may be regarded as superalgebra by reading the grading modulo 2. This includes examples such as tensor algebras and polynomial rings over K.
  • In particular, any exterior algebra over K is a superalgebra. The exterior algebra is the standard example of a supercommutative algebra.
  • The symmetric polynomials and alternating polynomials together form a superalgebra, being the even and odd parts, respectively. Note that this is a different grading from the grading by degree.
  • Clifford algebras are superalgebras. They are generally noncommutative.
  • The set of all endomorphisms (denoted , where the boldface is referred to as internal , composed of all linear maps) of a super vector space forms a superalgebra under composition.
  • The set of all square supermatrices with entries in K forms a superalgebra denoted by Mp|q(K). This algebra may be identified with the algebra of endomorphisms of a free supermodule over K of rank p|q and is the internal Hom of above for this space.
  • Lie superalgebras are a graded analog of Lie algebras. Lie superalgebras are nonunital and nonassociative; however, one may construct the analog of a universal enveloping algebra of a Lie superalgebra which is a unital, associative superalgebra.

Further definitions and constructions

Even subalgebra

Let A be a superalgebra over a commutative ring K. The submodule A0, consisting of all even elements, is closed under multiplication and contains the identity of A and therefore forms a subalgebra of A, naturally called the even subalgebra. It forms an ordinary algebra over K.

The set of all odd elements A1 is an A0-bimodule whose scalar multiplication is just multiplication in A. The product in A equips A1 with a bilinear form

such that

for all x, y, and z in A1. This follows from the associativity of the product in A.

Grade involution

There is a canonical involutive automorphism on any superalgebra called the grade involution. It is given on homogeneous elements by

and on arbitrary elements by

where xi are the homogeneous parts of x. If A has no 2-torsion (in particular, if 2 is invertible) then the grade involution can be used to distinguish the even and odd parts of A:

Supercommutativity

The supercommutator on A is the binary operator given by

on homogeneous elements, extended to all of A by linearity. Elements x and y of A are said to supercommute if [x, y] = 0.

The supercenter of A is the set of all elements of A which supercommute with all elements of A:

The supercenter of A is, in general, different than the center of A as an ungraded algebra. A commutative superalgebra is one whose supercenter is all of A.

Super tensor product

The graded tensor product of two superalgebras A and B may be regarded as a superalgebra AB with a multiplication rule determined by:

If either A or B is purely even, this is equivalent to the ordinary ungraded tensor product (except that the result is graded). However, in general, the super tensor product is distinct from the tensor product of A and B regarded as ordinary, ungraded algebras.

Generalizations and categorical definition

One can easily generalize the definition of superalgebras to include superalgebras over a commutative superring. The definition given above is then a specialization to the case where the base ring is purely even.

Let R be a commutative superring. A superalgebra over R is a R-supermodule A with a R-bilinear multiplication A × AA that respects the grading. Bilinearity here means that

for all homogeneous elements rR and x, yA.

Equivalently, one may define a superalgebra over R as a superring A together with an superring homomorphism RA whose image lies in the supercenter of A.

One may also define superalgebras categorically. The category of all R-supermodules forms a monoidal category under the super tensor product with R serving as the unit object. An associative, unital superalgebra over R can then be defined as a monoid in the category of R-supermodules. That is, a superalgebra is an R-supermodule A with two (even) morphisms

for which the usual diagrams commute.

Notes

  1. ^ Kac, Martinez & Zelmanov 2001, p. 3
  2. ^ Varadarajan 2004, p. 87
  3. ^ a b See Deligne's discussion of these two cases.

References

  • Deligne, P.; Morgan, J. W. (1999). "Notes on Supersymmetry (following Joseph Bernstein)". Quantum Fields and Strings: A Course for Mathematicians. Vol. 1. American Mathematical Society. pp. 41–97. ISBN 0-8218-2012-5.

Read other articles:

Запрос «Черкащина» перенаправляется сюда; о футбольном клубе см. Черкащина (футбольный клуб). Регион УкраиныОбластьЧеркасская областьукр. Черкаська область Флаг Герб 49°26′41″ с. ш. 32°03′37″ в. д.HGЯO Страна  Украина Включает 4 района Адм. центр  Черкассы Пре...

 

Policy on permits required to enter Laos Politics of Laos Constitution Marxism–Leninism Kaysone Phomvihane Thought People's Revolutionary Party National Congress (11th) Rules Central Committee (11th) General Secretary Thongloun Sisoulith Secretariat (11th) Standing Member Bounthong Chitmany Politburo (11th) Inspection Commission (11th) Chairman Khamphan Phommathat Vice Chairman Vilayvanh Boudakham Defence and Public Security Commission (11th) Chairman Thongloun Sisoulith National Assembly 9...

 

Pulau Heron, Australia Pulau pasir atau gundukan pasir (Inggris: cay) merujuk pada berbagai pulau berpasir kecil dan berketinggian rendah di permukaan terumbu karang. Gundukan pasir timbul di lingkungan tropis di sepanjang Samudera Pasifik, Samudera Atlantik dan Samudra Hindia (termasuk Karibia dan Karang Penghalang Besar dan Karang Penghalang Belize). Perkembangan dan stabilitas Perubahan signifikan pada gundukan pasir dan ekosistem sekitar mereka dapat timbul dari fenomena alam seperti ...

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada November 2022. Ayoze Pertandingan dengan hujan salju besar Real Madrid 2 - Mallorca 0, 2010Informasi pribadiNama lengkap Ayoze Díaz DíazTanggal lahir 25 Mei 1982 (umur 41)Tempat lahir La Laguna, SpanyolTinggi 1,75 m (5 ft 9 in)Posisi bermain Be...

 

152d Air Operations GroupCountry United StatesAllegiance New YorkBranch  Air National GuardTypeGroupRoleAir Operations CenterGarrison/HQHancock Field Air National Guard Base, Syracuse, New YorkCommandersCurrentcommanderCol Kevin Saint St. John Deputy, CC Col John Smiley Meili CMSgt Christopher Vandemortel Group SuperintendentInsignia152d Air Operations Group emblemMilitary unit The 152d Air Operations Group (152 AOG) is a unit of the New York Air National Guard, stationed at Ha...

 

Group of composers working in Venice during the Renaissance This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Venetian School music – news · newspapers · books · scholar · JSTOR (July 2019) (Learn how and when to remove this message) Basilica San Marco di Venezia in the evening. The spacious, resonant int...

Disambiguazione – Ravennate rimanda qui. Se stai cercando il quartiere di Cesena, vedi Ravennate (Cesena). Provincia di Ravennaprovincia Provincia di Ravenna – VedutaIl palazzo della provincia a Ravenna. LocalizzazioneStato Italia Regione Emilia-Romagna AmministrazioneCapoluogo Ravenna PresidenteMichele De Pascale (PD) dal 4-9-2016 Data di istituzione1859 TerritorioCoordinatedel capoluogo44°25′04″N 12°11′58″E / 44.417778°N 12.199444...

 

ХристианствоБиблия Ветхий Завет Новый Завет Евангелие Десять заповедей Нагорная проповедь Апокрифы Бог, Троица Бог Отец Иисус Христос Святой Дух История христианства Апостолы Хронология христианства Раннее христианство Гностическое христианство Вселенские соборы Н...

 

NASCAR Seri Piala Sprint 2010 Sebelum: 2009 Sesudah: 2011 Jimmie Johnson menjadi pembalap pertama dalam sejarah NASCAR yang berhasil menjadi juara umum lima musim berturut-turut. NASCAR Seri Piala Sprint 2010 merupakan musim ke 62 dari NASCAR Seri Piala Sprint. Musim ini berlangsung dari bulan Februari 2010 lewat Daytona 500 di Daytona International Speedway dan berakhir pada bulan November dalam Ford 400 di Homestead-Miami Speedway. Jimmie Johnson kembali keluar sebagai juara umum di musim ...

American musician Otis SpannBackground informationBorn(1924-03-21)March 21, 1924 or 1930Belzoni or Jackson, Mississippi, U.S.Died(1970-04-24)April 24, 1970 (aged 40–46)Chicago, Illinois, U.S.GenresChicago blues[1]Occupation(s)MusicianInstrument(s)Piano, vocalsYears active1944–1970LabelsDecca, Chess, Storyville, Testament, Bluesway, Vanguard, CBS/Blue HorizonMusical artist Otis Spann (March 21, 1924 or 1930 – April 24, 1970) was an American blues musician, whom many ...

 

周處除三害The Pig, The Snake and The Pigeon正式版海報基本资料导演黃精甫监制李烈黃江豐動作指導洪昰顥编剧黃精甫主演阮經天袁富華陳以文王淨李李仁謝瓊煖配乐盧律銘林孝親林思妤保卜摄影王金城剪辑黃精甫林雍益制片商一種態度電影股份有限公司片长134分鐘产地 臺灣语言國語粵語台語上映及发行上映日期 2023年10月6日 (2023-10-06)(台灣) 2023年11月2日 (2023-11-02)(香�...

 

AdnkronosLogo Sede centrale, Piazza Mastai, Roma Stato Italia Forma societariaSocietà per azioni Fondazione24 luglio 1963 a Roma Fondata daFusione di Kronos e Agenzia di Notizie (AdN) Sede principaleRoma GruppoGMC S.a.p.A. di Giuseppe Marra Persone chiave Giuseppe Marra (presidente) Angela Antonini (AD) Pietro Giovanni Zoroddu (direttore generale)[1] SettoreEditoria ProdottiAgenzia di stampa Sito webwww.adnkronos.com Modifica dati su Wikidata · Manuale Adnkronos, è un...

British prince; sixth son of George III Prince Augustus FrederickDuke of SussexPortrait by Guy Head, 1798Born27 January 1773Buckingham House, LondonDied21 April 1843(1843-04-21) (aged 70)Kensington Palace, LondonBurial4 May 1843Kensal Green Cemetery, LondonSpouses Lady Augusta Murray ​ ​(m. 1793; ann. 1794)​ Lady Cecilia Underwood ​ ​(m. 1831)​ IssueSir Augustus d'EsteAugusta Emma Wilde, Baroness TruroHous...

 

إن حيادية وصحة هذه المقالة محلُّ خلافٍ. ناقش هذه المسألة في صفحة نقاش المقالة، ولا تُزِل هذا القالب من غير توافقٍ على ذلك. (نقاش) (أبريل 2019) علي جمعة   معلومات شخصية الميلاد 3 مارس 1952 (72 سنة)  بني سويف  مواطنة مصر  مناصب مفتي الديار المصرية (19 )   في المنصب28 سبتمبر 2...

 

«بول ميت» هي أسطورة شعبية ونظرية مؤامرة تزعم أن بول مكارتني، عضو فرقة الروك الإنجليزية البيتلز، تُوفي في 9 نوفمبر 1966 واستُبدل سرًا بشبيه له. بدأت الإشاعة في الانتشار تقريبًا عام 1967، لكن شعبيتها تنامت بعد نشر تقارير عنها في حرم الكلية الأميركية في أواخر عام 1969. اعتمد مؤيدو ا...

American politician John B. MoranDistrict Attorney of Suffolk County, MassachusettsIn officeDecember 2, 1905 – February 6, 1909Preceded byMichael J. SughrueSucceeded byArthur D. Hill Personal detailsBorn(1859-04-27)April 27, 1859Wakefield, Massachusetts, U.S.DiedFebruary 6, 1909(1909-02-06) (aged 49)Phoenix, Arizona, U.S.Resting placeHoly Cross CemeteryMalden, Massachusetts[1]Political partyIndependent (1905–06)Prohibition (1906)Democrat (1906–07)Independence Leagu...

 

أوسكار مينجويزا Óscar Mingueza معلومات شخصية الاسم الكامل أوسكار مينجويزا غارسيا[1] الميلاد 13 مايو 1999 (العمر 25 سنة)[2]سانتا بيربيتوا دي موجودا، إسبانيا الطول 1.84 م (6 قدم 1⁄2 بوصة)[2] مركز اللعب مدافع / ظهير أيمن الجنسية إسبانيا  معلومات النادي النادي الحالي س...

 

Kapal perusak Jepang Fubuki Tentang kelas Nama:Kelas FubukiPembangun: Arsenal Angkatan Laut Maizuru Yokohama Shipyards Galangan Kapal Fujinagata Perusahaan Dok Uraga Arsenal Angkatan Laut Sasebo Ishikawajima ShipyardsOperator: Angkatan Laut Kekaisaran Jepang  Angkatan Laut Uni SovietDidahului oleh:Kapal perusak kelas-MutsukiDigantikan oleh:Kapal perusak kelas-HatsuharuSubkelas:Tipe I (Kelas Fubuki) Tipe II (Kelas Ayanami) Tipe III (Kelas Akatsuki)Dibangun:1926–1933Bertugas:1...

Pour les articles homonymes, voir La Dispute. La Dispute Auteur Marivaux Pays France Genre Comédie Éditeur Jacques Clousier Lieu de parution Paris Date de parution 1747 Date de création 22 septembre 1744 Metteur en scène Comédiens italiens Lieu de création Hôtel de Bourgogne modifier  La Dispute est une comédie en un acte et en prose de Marivaux représentée pour la première fois le 19 octobre 1744 par les comédiens français à la Comédie-Française. L’une des dernières ...

 

Pour les articles homonymes, voir Urban (homonymie). Urban Trad Urban Trad au Stered Festival le 13 novembre 2015, à Morlaix, en Bretagne.Informations générales Pays d'origine Belgique Genre musical Musiques du monde Années actives 2000–2012, 2014–2020 Labels Universal, Coop Breizh Site officiel www.urbantrad.com Composition du groupe Anciens membres Veronica Codesal Soetkin CollierRémi DeckerJill Delien Philip MasurePhilippe Mobers Dirk NaessensYves BarbieuxCédric WaterschootDidie...