Supersymmetric quantum mechanics

In theoretical physics, supersymmetric quantum mechanics is an area of research where supersymmetry are applied to the simpler setting of plain quantum mechanics, rather than quantum field theory. Supersymmetric quantum mechanics has found applications outside of high-energy physics, such as providing new methods to solve quantum mechanical problems, providing useful extensions to the WKB approximation, and statistical mechanics.

Introduction

Understanding the consequences of supersymmetry (SUSY) has proven mathematically daunting, and it has likewise been difficult to develop theories that could account for symmetry breaking, i.e., the lack of observed partner particles of equal mass. To make progress on these problems, physicists developed supersymmetric quantum mechanics, an application of the supersymmetry superalgebra to quantum mechanics as opposed to quantum field theory. It was hoped that studying SUSY's consequences in this simpler setting would lead to new understanding; remarkably, the effort created new areas of research in quantum mechanics itself.

For example, students are typically taught to "solve" the hydrogen atom by a laborious process which begins by inserting the Coulomb potential into the Schrödinger equation. After a considerable amount of work using many differential equations, the analysis produces a recursion relation for the Laguerre polynomials. The outcome is the spectrum of hydrogen-atom energy states (labeled by quantum numbers n and l). Using ideas drawn from SUSY, the final result can be derived with significantly greater ease, in much the same way that operator methods are used to solve the harmonic oscillator.[1] A similar supersymmetric approach can also be used to more accurately find the hydrogen spectrum using the Dirac equation.[2] Oddly enough, this approach is analogous to the way Erwin Schrödinger first solved the hydrogen atom.[3][4] He did not call his solution supersymmetric, as SUSY was thirty years in the future.

The SUSY solution of the hydrogen atom is only one example of the very general class of solutions which SUSY provides to shape-invariant potentials, a category which includes most potentials taught in introductory quantum mechanics courses.

SUSY quantum mechanics involves pairs of Hamiltonians which share a particular mathematical relationship, which are called partner Hamiltonians. (The potential energy terms which occur in the Hamiltonians are then called partner potentials.) An introductory theorem shows that for every eigenstate of one Hamiltonian, its partner Hamiltonian has a corresponding eigenstate with the same energy (except possibly for zero energy eigenstates). This fact can be exploited to deduce many properties of the eigenstate spectrum. It is analogous to the original description of SUSY, which referred to bosons and fermions. We can imagine a "bosonic Hamiltonian", whose eigenstates are the various bosons of our theory. The SUSY partner of this Hamiltonian would be "fermionic", and its eigenstates would be the theory's fermions. Each boson would have a fermionic partner of equal energy—but, in the relativistic world, energy and mass are interchangeable, so we can just as easily say that the partner particles have equal mass.

SUSY concepts have provided useful extensions to the WKB approximation in the form of a modified version of the Bohr-Sommerfeld quantization condition. In addition, SUSY has been applied to non-quantum statistical mechanics through the Fokker–Planck equation, showing that even if the original inspiration in high-energy particle physics turns out to be a blind alley, its investigation has brought about many useful benefits.

Example: the harmonic oscillator

The Schrödinger equation for the harmonic oscillator takes the form

where is the th energy eigenstate of with energy . We want to find an expression for in terms of . We define the operators

and

where , which we need to choose, is called the superpotential of . We also define the aforementioned partner Hamiltonians and as

A zero energy ground state of would satisfy the equation

Assuming that we know the ground state of the harmonic oscillator , we can solve for as

We then find that

We can now see that

This is a special case of shape invariance, discussed below. Taking without proof the introductory theorem mentioned above, it is apparent that the spectrum of will start with and continue upwards in steps of The spectra of and will have the same even spacing, but will be shifted up by amounts and , respectively. It follows that the spectrum of is therefore the familiar .

SUSY QM superalgebra

In fundamental quantum mechanics, we learn that an algebra of operators is defined by commutation relations among those operators. For example, the canonical operators of position and momentum have the commutator . (Here, we use "natural units" where the Planck constant is set equal to 1.) A more intricate case is the algebra of angular momentum operators; these quantities are closely connected to the rotational symmetries of three-dimensional space. To generalize this concept, we define an anticommutator, which relates operators the same way as an ordinary commutator, but with the opposite sign:

If operators are related by anticommutators as well as commutators, we say they are part of a Lie superalgebra. Let's say we have a quantum system described by a Hamiltonian and a set of operators . We shall call this system supersymmetric if the following anticommutation relation is valid for all :

If this is the case, then we call the system's supercharges.

Example

Let's look at the example of a one-dimensional nonrelativistic particle with a 2D (i.e., two states) internal degree of freedom called "spin" (it's not really spin because "real" spin is a property of 3D particles). Let be an operator which transforms a "spin up" particle into a "spin down" particle. Its adjoint then transforms a spin down particle into a spin up particle; the operators are normalized such that the anticommutator . And . Let be the momentum of the particle and be its position with . Let (the "superpotential") be an arbitrary complex analytic function of and define the supersymmetric operators

Note that and are self-adjoint. Let the Hamiltonian

where W′ is the derivative of W. Also note that {Q1, Q2} = 0. This is nothing other than N = 2 supersymmetry. Note that acts like an electromagnetic vector potential.

Let's also call the spin down state "bosonic" and the spin up state "fermionic". This is only in analogy to quantum field theory and should not be taken literally. Then, Q1 and Q2 maps "bosonic" states into "fermionic" states and vice versa.

Reformulating this a bit:

Define

and,

and

An operator is "bosonic" if it maps "bosonic" states to "bosonic" states and "fermionic" states to "fermionic" states. An operator is "fermionic" if it maps "bosonic" states to "fermionic" states and vice versa. Any operator can be expressed uniquely as the sum of a bosonic operator and a fermionic operator. Define the supercommutator [,} as follows: Between two bosonic operators or a bosonic and a fermionic operator, it is none other than the commutator but between two fermionic operators, it is an anticommutator.

Then, x and p are bosonic operators and b, , Q and are fermionic operators.

Let's work in the Heisenberg picture where x, b and are functions of time.

Then,

This is nonlinear in general: i.e., x(t), b(t) and do not form a linear SUSY representation because isn't necessarily linear in x. To avoid this problem, define the self-adjoint operator . Then,

and we see that we have a linear SUSY representation.

Now let's introduce two "formal" quantities, ; and with the latter being the adjoint of the former such that

and both of them commute with bosonic operators but anticommute with fermionic ones.

Next, we define a construct called a superfield:

f is self-adjoint. Then,

Incidentally, there's also a U(1)R symmetry, with p and x and W having zero R-charges and having an R-charge of 1 and b having an R-charge of −1.

Shape invariance

Suppose is real for all real . Then we can simplify the expression for the Hamiltonian to

There are certain classes of superpotentials such that both the bosonic and fermionic Hamiltonians have similar forms. Specifically

where the 's are parameters. For example, the hydrogen atom potential with angular momentum can be written this way.

This corresponds to for the superpotential

This is the potential for angular momentum shifted by a constant. After solving the ground state, the supersymmetric operators can be used to construct the rest of the bound state spectrum.

In general, since and are partner potentials, they share the same energy spectrum except the one extra ground energy. We can continue this process of finding partner potentials with the shape invariance condition, giving the following formula for the energy levels in terms of the parameters of the potential

where are the parameters for the multiple partnered potentials.

Applications

In 2021, supersymmetric quantum mechanics was applied to option pricing and the analysis of markets in quantum finance,[5] and to financial networks.[6]

See also

References

  1. ^ Valance, A.; Morgan, T. J.; Bergeron, H. (1990), "Eigensolution of the Coulomb Hamiltonian via supersymmetry", American Journal of Physics, 58 (5), AAPT: 487–491, Bibcode:1990AmJPh..58..487V, doi:10.1119/1.16452, archived from the original on 2013-02-24
  2. ^ Thaller, B. (1992). The Dirac Equation. Texts and Monographs in Physics. Springer.
  3. ^ Schrödinger, Erwin (1940), "A Method of Determining Quantum-Mechanical Eigenvalues and Eigenfunctions", Proceedings of the Royal Irish Academy, 46, Royal Irish Academy: 9–16
  4. ^ Schrödinger, Erwin (1941), "Further Studies on Solving Eigenvalue Problems by Factorization", Proceedings of the Royal Irish Academy, 46, Royal Irish Academy: 183–206
  5. ^ Halperin, Igor (14 January 2021). "Non-Equilibrium Skewness, Market Crises, and Option Pricing: Non-Linear Langevin Model of Markets with Supersymmetry". SSRN 3724000.
  6. ^ Bardoscia, Marco; Barucca, Paolo; Battiston, Stefano; Caccioli, Fabio; Cimini, Giulio; Garlaschelli, Diego; Saracco, Fabio; Squartini, Tiziano; Caldarelli, Guido (10 June 2021). "The physics of financial networks". Nature Reviews Physics. 3 (7): 490–507. arXiv:2103.05623. doi:10.1038/s42254-021-00322-5. S2CID 232168335.

Sources

  • F. Cooper, A. Khare and U. Sukhatme, "Supersymmetry and Quantum Mechanics", Phys.Rept.251:267–385, 1995.
  • D.S. Kulshreshtha, J.Q. Liang and H.J.W. Muller-Kirsten, "Fluctuation equations about classical field configurations and supersymmetric quantum mechanics", Annals Phys. 225:191-211, 1993.
  • G. Junker, "Supersymmetric Methods in Quantum and Statistical Physics", Springer-Verlag, Berlin, 1996
  • B. Mielnik and O. Rosas-Ortiz, "Factorization: Little or great algorithm?", J. Phys. A: Math. Gen. 37: 10007–10035, 2004

Read other articles:

2001 video game This article is about the 2001 game. For the 2013 game, see DmC: Devil May Cry. 2001 video gameDevil May CryNorth American PlayStation 2 box artDeveloper(s)Capcom Production Studio 4[2]Publisher(s)CapcomDirector(s)Hideki KamiyaProducer(s)Hiroyuki KobayashiArtist(s)Makoto TsuchibayashiYoshinori MatsushitaSawaki TakeyasuWriter(s)Hideki Kamiya[3]Noboru Sugimura[4]Composer(s)Masami UedaMasato KohdaMisao SenbongiSeriesDevil May CryPlatform(s)PlayStation 2Pla...

 

 

Novel by Kim Stanley Robinson 2312 First editionAuthorKim Stanley RobinsonCover artistKirk BenshoffCountryUnited StatesLanguageEnglishGenreScience fictionPublisherOrbitPublication dateMay 23, 2012Media typePrint (hardcover and electronic book) and audio-CDPages576AwardsNebula Award for Best NovelISBN978-0-316-09812-0 2312 is a hard science fiction novel by American writer Kim Stanley Robinson, published in 2012. It is set in the year 2312 when society has spread out across the Solar...

 

 

1931 film This article needs a plot summary. Please add one in your own words. (March 2021) (Learn how and when to remove this template message) Father's SonDirected byWilliam BeaudineWritten byWalter AnthonyBased onOld Fathers and Young Sonsby Booth TarkingtonProduced byRobert NorthStarringLeon JanneyLewis StoneIrene RichJohn HallidayMickey BennettCinematographyArthur C. MillerProductioncompanyWarner Bros.Distributed byWarner Bros.Release date March 7, 1931 (1931-03-07) Runnin...

هذه المقالة بحاجة لصندوق معلومات. فضلًا ساعد في تحسين هذه المقالة بإضافة صندوق معلومات مخصص إليها. الفن الصوتي هو النظام الفني الذي يستخدم الصوت كوسيلة أساسية. مثل العديد من أنواع الفن المعاصر، فإن فن الصوت متعدد التخصصات في الطبيعة، أو يأخذ على أشكال هجينة. يمكن للفن الصو�...

 

 

This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: Television in Cyprus – news · newspapers · books · scholar · JSTOR (June 2012) Television in Cyprus was introduced in 1956. In 1957, CyBC was created.[1] Private TV was introduced on 26 April 1992, by Logos TV which started its transmissions i...

 

 

Aksara PallawaJenis aksara abugida BahasaTamilSanskertaSaurashtraMelayu Kuno Jawa KunoPeriodesejak sekitar abad ke-3 M hingga ke-10 MStatusTidak digunakan lagiDaerahIndia Selatan, Asia TenggaraAksara terkaitSilsilahMenurut hipotesis hubungan antara abjad Aramea dengan Brahmi, maka silsilahnya sebagai berikut: Abjad Proto-Sinai Abjad Fenisia Abjad Aramea Aksara Brahmi Dari aksara Brahmi diturunkanlah:Aksara Brahmi TamilAksara PallawaAksara turunanChamDhives AkuruKawi KunoKhmerMalayalamSaurasht...

American TV series PainkillerCreated by Micah Fitzerman-Blue Noah Harpster Based on Empire of Pain: The Secret History of the Sackler Dynastyby Patrick Radden Keefe Pain Killer: An Empire of Deceit and the Origin of America's Opioid Epidemicby Barry Meier Directed byPeter BergStarring Uzo Aduba Matthew Broderick Taylor Kitsch Dina Shihabi West Duchovny Carolina Bartczak Brian Markinson John Rothman Tyler Ritter Sam Anderson John Ales Ron Lea Jack Mulhern Noah Harpster ComposerMatt Morton[...

 

 

2015 studio album by HeidevolkVeluaStudio album by HeidevolkReleasedMarch 20, 2015GenreFolk metal, Viking metal, pagan metalLength67:03LanguageDutch, EnglishLabelNapalmHeidevolk chronology Batavi(2012) Velua(2015) Velua is the fifth full-length album by the Dutch pagan / Viking / folk metal band Heidevolk. It was released on March 20, 2015 through Napalm Records. Velua is a concept album that offers a dark, mythical picture of the Veluwe woodlands, in the province of Gelderland.[c...

 

 

Indonesia's Next Top ModelMusim 2Kontestan Indonesia's Next Top Model (siklus 2)PresenterLuna MayaJuri Luna Maya Panca Makmun Ivan Gunawan Ayu Gani Jum. peserta18PemenangSarah TumiwaTempat keduaHelen HiuTempat ketigaFaradina Amalia Negara asalIndonesiaJml. episode40RilisJaringan asliTanggal disiarkan4 November 2021 (2021-11-04)[1] –18 Maret 2022 (2022-3-18)Kronologi Musim← SebelumnyaMusim 1 Berikutnya →Musim 3 Siklus kedua Indonesia's Next Top Model (dis...

Artikel ini membutuhkan rujukan tambahan agar kualitasnya dapat dipastikan. Mohon bantu kami mengembangkan artikel ini dengan cara menambahkan rujukan ke sumber tepercaya. Pernyataan tak bersumber bisa saja dipertentangkan dan dihapus.Cari sumber: Bank UOB Indonesia lama – berita · surat kabar · buku · cendekiawan · JSTOR (Desember 2013) PT Bank UOB IndonesiaJenisAnak perusahaan United Overseas Bank LtdIndustriPerbankanNasibMerger dengan Bank UOB ...

 

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Oktober 2022. Bagian dari seri tentang PemerintahanKeuangan publik KebijakanKebijakan ekonomiKebijakan fiskal · Kebijakan moneterKebijakan perdagangan · Kebijakan investasiKebijakan pertanian · Kebijakan industriKebijakan energi ...

 

 

American baseball player & coach (born 1956) For the American football player, see Dave Hudgens (American football). Baseball player Dave HudgensHudgens as coach for the New York Mets in 2012.Toronto Blue Jays – No. 19First baseman / Hitting coach / Hitting strategist / Bench coachBorn: (1956-12-05) December 5, 1956 (age 67)Oroville, California, U.S.Batted: LeftThrew: LeftMLB debutSeptember 4, 1983, for the Oakland AthleticsLast MLB appearanceOctober 1, 1983,...

2si

Artikel ini perlu diwikifikasi agar memenuhi standar kualitas Wikipedia. Anda dapat memberikan bantuan berupa penambahan pranala dalam, atau dengan merapikan tata letak dari artikel ini. Untuk keterangan lebih lanjut, klik [tampil] di bagian kanan. Mengganti markah HTML dengan markah wiki bila dimungkinkan. Tambahkan pranala wiki. Bila dirasa perlu, buatlah pautan ke artikel wiki lainnya dengan cara menambahkan [[ dan ]] pada kata yang bersangkutan (lihat WP:LINK untuk keterangan lebih lanjut...

 

 

American politician John W. MoonFrom 1893's The House of Representatives of the Fifty Third Congress by The Graphic Chicago.Member of the U.S. House of Representativesfrom Michigan's 9th districtIn officeMarch 4, 1893 – March 3, 1895Preceded byHarrison H. WheelerSucceeded byRoswell P. Bishop Personal detailsBorn(1836-01-18)January 18, 1836Wayne County, Michigan, U.S.DiedApril 5, 1898(1898-04-05) (aged 62)Muskegon, Michigan, U.S.Political partyRepublican John Wesley...

 

 

Questa voce sugli argomenti allenatori di calcio britannici e calciatori irlandesi è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti dei progetti di riferimento 1, 2. Owen CoyleNazionalità Irlanda Altezza180 cm Calcio RuoloAllenatore (ex attaccante) Squadra Chennaiyin Termine carriera1º novembre 2007 - giocatore CarrieraSquadre di club1 1985-1988 Dumbarton103 (36)1988-1990 Clydebank63 (33)1990-1993 Airdrie...

Overview of geographical name changes in the Republic of Turkey Enver Pasha issued an edict in 1916 that all place names originating from non-Muslim peoples would be changed. Place name changes in Turkey have been undertaken, periodically, in bulk from 1913 to the present by successive Turkish governments. Thousands of names within the Turkish Republic or its predecessor the Ottoman Empire have been changed from their popular or historic alternatives in favour of recognizably Turkish names, a...

 

 

Decoration of the United States military AwardMexican Border Service MedalObverseTypeService medalAwarded forNational Guard troops federalized for service against Mexico, but who did not qualify for the Mexican Service Medal.Country United StatesPresented bySecretary of WarStatusObsoleteEstablishedJuly 9, 1918Total recipients41,000Service ribbon PrecedenceNext (higher)Mexican Service MedalNext (lower)World War I Victory MedalRelatedTexas Cavalry Medal The Mexican Border Service...

 

 

Hydrous calcium sulfo-aluminate EttringiteEttringite, Kalahari manganese fields, Northern Cape Province, South AfricaGeneralCategorySulfate mineralsFormula(repeating unit)Ca6Al2(SO4)3(OH)12·26H2OIMA symbolEtt[1]Strunz classification7.DG.15Crystal systemTrigonalCrystal classDitrigonal pyramidal (3m) H-M symbol: (3m)Space groupP31cUnit cella = 11.23, c = 21.44 [Å]; Z = 2IdentificationColorColorless, pale yellow, milky whiteCrystal habitAcicular growth, striated pris...

Not to be confused with USS General George M. Randall (AP-115). USS Randall (APA-224), circa in 1945 History United States NameRandall NamesakeRandall County, Texas Orderedas a Type VC2-S-AP5 hull, MCE hull 572[1] BuilderPermanente Metals Corporation, Richmond, California Yard number572[1] Laid down15 September 1944 Launched15 November 1944 Sponsored byMrs. Donald D. Dick Commissioned12 December 1944 Decommissioned6 April 1956 Stricken1 July 1960 Identification Hull symbo...

 

 

Scottish Cup 2000-2001Tennent's Scottish Cup 2000-2001 Competizione Scottish Cup Sport Calcio Edizione 116ª Organizzatore SFA Luogo  Scozia Risultati Vincitore Celtic(31º titolo) Finalista Hibernian Cronologia della competizione 1999-2000 2001-2002 Manuale La Scottish Cup 2000-01 è stata la 116ª edizione del torneo. Si è conclusa il 26 maggio 2001. I Celtic hanno vinto il trofeo per la 31ª volta. Indice 1 Primo turno 1.1 Replay 2 Secondo turno 2.1 Replay 3 Terzo turno 3.1 Replay 4...