Supersymmetry algebra

In theoretical physics, a supersymmetry algebra (or SUSY algebra) is a mathematical formalism for describing the relation between bosons and fermions. The supersymmetry algebra contains not only the Poincaré algebra and a compact subalgebra of internal symmetries, but also contains some fermionic supercharges, transforming as a sum of N real spinor representations of the Poincaré group. Such symmetries are allowed by the Haag–Łopuszański–Sohnius theorem. When N>1 the algebra is said to have extended supersymmetry. The supersymmetry algebra is a semidirect sum of a central extension of the super-Poincaré algebra by a compact Lie algebra B of internal symmetries.

Bosonic fields commute while fermionic fields anticommute. In order to have a transformation that relates the two kinds of fields, the introduction of a Z2-grading under which the even elements are bosonic and the odd elements are fermionic is required. Such an algebra is called a Lie superalgebra.

Just as one can have representations of a Lie algebra, one can also have representations of a Lie superalgebra, called supermultiplets. For each Lie algebra, there exists an associated Lie group which is connected and simply connected, unique up to isomorphism, and the representations of the algebra can be extended to create group representations. In the same way, representations of a Lie superalgebra can sometimes be extended into representations of a Lie supergroup.

Structure of a supersymmetry algebra

The general supersymmetry algebra for spacetime dimension d, and with the fermionic piece consisting of a sum of N irreducible real spinor representations, has a structure of the form

(P×Z).Q.(L×B)

where

  • P is a bosonic abelian vector normal subalgebra of dimension d, normally identified with translations of spacetime. It is a vector representation of L.
  • Z is a scalar bosonic algebra in the center whose elements are called central charges.
  • Q is an abelian fermionic spinor subquotient algebra, and is a sum of N real spinor representations of L. (When the signature of spacetime is divisible by 4 there are two different spinor representations of L, so there is some ambiguity about the structure of Q as a representation of L.) The elements of Q, or rather their inverse images in the supersymmetry algebra, are called supercharges. The subalgebra (P×Z).Q is sometimes also called the supersymmetry algebra and is nilpotent of length at most 2, with the Lie bracket of two supercharges lying in P×Z.
  • L is a bosonic subalgebra, isomorphic to the Lorentz algebra in d dimensions, of dimension d(d–1)/2
  • B is a scalar bosonic subalgebra, given by the Lie algebra of some compact group, called the group of internal symmetries. It commutes with P,Z, and L, but may act non-trivially on the supercharges Q.

The terms "bosonic" and "fermionic" refer to even and odd subspaces of the superalgebra.

The terms "scalar", "spinor", "vector", refer to the behavior of subalgebras under the action of the Lorentz algebra L.

The number N is the number of irreducible real spin representations. When the signature of spacetime is divisible by 4 this is ambiguous as in this case there are two different irreducible real spinor representations, and the number N is sometimes replaced by a pair of integers (N1, N2).

The supersymmetry algebra is sometimes regarded as a real super algebra, and sometimes as a complex algebra with a hermitian conjugation. These two views are essentially equivalent, as the real algebra can be constructed from the complex algebra by taking the skew-Hermitian elements, and the complex algebra can be constructed from the real one by taking tensor product with the complex numbers.

The bosonic part of the superalgebra is isomorphic to the product of the Poincaré algebra P.L with the algebra Z×B of internal symmetries.

When N>1 the algebra is said to have extended supersymmetry.

When Z is trivial, the subalgebra P.Q.L is the super-Poincaré algebra.

See also

References

  • Bagger, Jonathan; Wess, Julius (1992), Supersymmetry and supergravity, Princeton Series in Physics (2nd ed.), Princeton University Press, ISBN 0-691-02530-4, MR 1152804
  • Haag, Rudolf; Sohnius, Martin; Łopuszański, Jan T. (1975), "All possible generators of supersymmetries of the S-matrix", Nuclear Physics B, 88 (2): 257–274, Bibcode:1975NuPhB..88..257H, doi:10.1016/0550-3213(75)90279-5, MR 0411396

Read other articles:

Elm cultivar Ulmus × hollandica 'Nottingham'Nottingham elms in Hope Drive, The Park, Nottingham, c.1900Hybrid parentageU. glabra × U. minorCultivar'Nottingham' Ulmus × hollandica 'Nottingham' is an elm cultivar. It was distributed from the early nineteenth century as 'Siberian elm' by Castle Nurseries, Nottingham, and much planted locally.[1][2][3] Richens (1983) described it as a hybrid, possibly of French origin, between wych elm Ulmus glabra and field elm Ulmus m...

 

Prescott adalah kota berpenduduk sekitar 4.200 orang di pantai utara Sungai Saint Lawrence, Ontario, Kanada, dan persis berseberangan dengan kota Ogdensburg, New York, Amerika Serikat. Kedua kota ini dihubungkan oleh Jembatan Internasional Ogdensburg-Prescott yang berada 5 km sebelah timut Prescott di Johnstown, Leeds and Grenville United Counties, Ontario. Sejarah Di kota ini terdapat situs bersejarah dan objek wisata Benteng Wellington. Pertempuran Thousand Islands terjadi Agustus 1760...

 

Dalam artikel ini, nama keluarganya adalah Loke (陆).Yang Berhormat TuanAnthony Loke Siew FookAP陆兆福 Menteri PerhubunganPetahanaMulai menjabat 3 Desember 2022Penguasa monarkiAbdullahPerdana MenteriAnwar IbrahimPendahuluWee Ka SiongPenggantiPetahanaDaerah pemilihanSerembanMasa jabatan21 Mei 2018 – 24 Februari 2020Penguasa monarkiMuhammad V (2018-2019) Abdullah (2019-2020)WakilKamarudin JaffarPendahuluLiow Tiong LaiPenggantiWee Ka SiongDaerah pemilihanSerembanSekretaris Je...

American college basketball season 1994–95 Illinois Fighting Illini men's basketballSan Juan Shootout, ChampionIllini Classic, ChampionNCAA men's Division I tournament, first roundConferenceBig Ten ConferenceRecord19–12 (10–8 Big Ten)Head coachLou HensonAssistant coaches Dick Nagy Jimmy Collins Mark Bial MVPKiwane GarrisCaptainRobert BennettShelly ClarkHome arenaAssembly HallSeasons← 1993–941995–96 → 1994–95 Big Ten Conference men's basketball stand...

 

Voce principale: Unione Sportiva Triestina. Questa voce o sezione sull'argomento stagioni delle società calcistiche italiane non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Segui i suggerimenti del progetto di riferimento. Questa voce sull'argomento stagioni delle società calcistiche italiane è solo un abbozzo. Contribuisci a migliorarla secondo ...

 

Marie Anne de La TrémoilleRitratto di Marie Anne de La Trémoille, opera di un anonimo di scuola francese, olio su tela, c. 1760 (Museo Condé, Chantilly, Francia)Duchessa consorte di BraccianoStemma In carica1675 –1698 PredecessoreIppolita Ludovisi SuccessoreNessuno, titolo venduto a Livio Odescalchi e Ducato annesso allo Stato Pontificio Principessa consorte di ChalaisIn carica1659 –1663 Altri titoliPrincesse des Ursins (Principessa degli Orsini)Camarera Mayor de Palacio (1701–...

Écriture lumineuse pour célébrer les Littoriali de 1934 (an XIII de l'ère fasciste). Archives de Paolo Monti Les Lictoriales (en italien Littoriali ou Giochi littoriali) du Sport, de l’Art et de la Culture et du Travail étaient des cycles annuels de manifestations et de concours, de nature culturelle, artistique, économique ou sportive, destinés aux jeunes universitaires, qui eurent lieu dans l’Italie fasciste entre 1932 et 1940. Organisation Les Lictoriales étaient organisées pa...

 

  「俄亥俄」重定向至此。关于其他用法,请见「俄亥俄 (消歧义)」。 俄亥俄州 美國联邦州State of Ohio 州旗州徽綽號:七葉果之州地图中高亮部分为俄亥俄州坐标:38°27'N-41°58'N, 80°32'W-84°49'W国家 美國加入聯邦1803年3月1日,在1953年8月7日追溯頒定(第17个加入联邦)首府哥倫布(及最大城市)政府 • 州长(英语:List of Governors of {{{Name}}}]]) •&...

 

American jazz ensemble Groove CollectiveCore four in its own imageBackground informationOriginNew York City, United StatesGenresJazz-funk, soul, jazz, Latin, discoYears active1990–presentWebsitewww.instagram.com/groovecollectiveofficial/Musical artist Groove Collective at Celebrate Brooklyn Groove Collective is an American band. In 2007 they were nominated for a Grammy Award for Best Contemporary Jazz Album of the Year for the release People People Music Music on the Savoy Jazz label. S...

2023 World Senior Curling ChampionshipsHost cityGangneung, South KoreaArenaGangneung Hockey CentreDatesApril 21–29Men's winner CanadaSkipHoward RajalaThirdRich MoffattSecondChris FultonLeadPaul MaddenAlternatePhil DanielCoachBill TschirhartFinalist Scotland (Connal)Women's winner CanadaSkipSherry AndersonThirdPatty HersikornSecondBrenda GoertzenLeadAnita SilvernagleCoachBill TschirhartFinalist Scotland (Lockhart)« 2022 2024 » The 2023 World Senior Curling Ch...

 

English businessman (1755–1847) Peter Finch MartineauSpouse(s)Catherine Marsh, Susannah Scott FamilyMartineau family Peter Finch Martineau (12 June 1755 – 2 December 1847)[1][2] was an English businessman and a philanthropist, with particular interest in improving the lives of disadvantaged people through education. Life and family A Unitarian, he was born into the renowned Martineau family of Norwich and is listed in the 1939 edition of Burke's Landed Gentry as the t...

 

British journalist and broadcaster Alan WhickerCBEBornAlan Donald Whicker2 August 1921 (school records)[1][note 1]Cairo, EgyptDied12 July 2013(2013-07-12) (aged 91)Trinity, Jersey, Channel Islands[2]OccupationJournalistTV presenter, broadcasterNationalityBritishPartnerOlga Deterding (1966–1969)Valerie Kleeman (1969–2013; his death) Alan Donald Whicker CBE (2 August 1921 – 12 July 2013) was a British journalist and television presenter and broadcaster. H...

English inventor (1748-1814) Joseph BramahBorn13 April 1748Stainborough, Yorkshire, EnglandDied9 December 1814(1814-12-09) (aged 66)Pimlico, London, EnglandNationalityEnglishKnown forhydraulic press Joseph Bramah (13 April 1748[1] – 9 December 1814) was an English inventor and locksmith. He is best known for having improved the flush toilet and inventing the hydraulic press. Along with William Armstrong, 1st Baron Armstrong, he can be considered one of the two fathers of h...

 

For the history of Christianity in Mongolia until the 13th century, see Christianity among the Mongols. Christianity by country Africa Algeria Angola Benin Botswana Burkina Faso Burundi Cameroon Cape Verde Central African Republic Chad Comoros Democratic Republic of the Congo Republic of the Congo Djibouti Egypt Equatorial Guinea Eritrea Eswatini Ethiopia Gabon Gambia Ghana Guinea Guinea-Bissau Ivory Coast Kenya Lesotho Liberia Libya Madagascar Malawi Mali Mauritania Mauritius Morocco Mozamb...

 

Cet article est une ébauche concernant l’Illinois. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Pour les articles homonymes, voir Comté de Grundy. Comté de Grundy(Grundy County) Le palais de justice de Morris, siège du comté. Administration Pays États-Unis État Illinois Chef-lieu Morris Fondation 1841 Démographie Population 50 063 hab. (2010) Densité 46 hab./km2 Géographie Coordonn�...

Indium(III) oksida Nama Nama lain indium trioksida Penanda Nomor CAS 1312-43-2 Y Model 3D (JSmol) Gambar interaktif 3DMet {{{3DMet}}} ChemSpider 133007 Y Nomor EC PubChem CID 150905 Nomor RTECS {{{value}}} CompTox Dashboard (EPA) DTXSID40893857 InChI InChI=1S/2In.3O/q2*+3;3*-2 YKey: PJXISJQVUVHSOJ-UHFFFAOYSA-N YInChI=1/2In.3O/q2*+3;3*-2Key: PJXISJQVUVHSOJ-UHFFFAOYAL SMILES [O-2].[O-2].[O-2].[In+3].[In+3] Sifat Rumus kimia In2O3 Massa molar 277.64 g/mol...

 

Не следует путать с вирусом лейкоза кошачьих. Лейкоз Микропрепарат костного мозга больного острой В-лимфоцитарной лейкобластной лейкемией МКБ-11 2B33.4 МКБ-10 C91-C95 МКБ-10-КМ C95.90, C95 и C95.9 МКБ-9 208.9 МКБ-9-КМ 208[1][2], 208.9[1][2], 207.8[2], 208.80[2], 207[2],...

 

Norman Cousins出生1915年6月24日美国新泽西州西霍博肯逝世1990年11月30日美国加州洛杉矶母校哥伦比亚大学师范学院(B.A.)父母Samuel Cousins、Sarah Babushkin Cousins签名 诺曼·考辛斯(Norman Cousins;1915年6月24日—1990年11月30日)是一位美国记者、作家、教授和世界和平倡导者。 生平 考辛斯出生于新泽西州西霍博肯(联合市)的犹太移民家庭[1]。11岁时,他被误诊为肺结核,住进�...

У этого топонима есть и другие значения, см. Сура.Сурачуваш. Сăр, гор.-мар. Шур, эрз. Сура лей Сура около Алатыря Характеристика Длина 841 км Бассейн 67 500 км² Расход воды 260 м³/с (в устье) Водоток Исток   (Т) (B)    • Местоположение село Сурские Вершин...

 

Rate of change of velocity This article is about acceleration in physics. For other uses, see Acceleration (disambiguation). Accelerate redirects here. For other uses, see Accelerate (disambiguation). AccelerationIn vacuum (no air resistance), objects attracted by Earth gain speed at a steady rate.Common symbolsaSI unitm/s2, m·s−2, m s−2Derivations fromother quantities a = d v d t = d 2 x d t 2 {\displaystyle \mathbf {a} ={\frac {d\mathbf {v} }{dt}}={\frac {d^{2}\mathbf {x} }{d...