Poincaré group

Henri Poincaré

The Poincaré group, named after Henri Poincaré (1905),[1] was first defined by Hermann Minkowski (1908) as the isometry group of Minkowski spacetime.[2][3] It is a ten-dimensional non-abelian Lie group that is of importance as a model in our understanding of the most basic fundamentals of physics.

Overview

The Poincaré group consists of all coordinate transformations of Minkowski space that do not change the spacetime interval between events. For example, if everything were postponed by two hours, including the two events and the path you took to go from one to the other, then the time interval between the events recorded by a stopwatch that you carried with you would be the same. Or if everything were shifted five kilometres to the west, or turned 60 degrees to the right, you would also see no change in the interval. It turns out that the proper length of an object is also unaffected by such a shift.

In total, there are ten degrees of freedom for such transformations. They may be thought of as translation through time or space (four degrees, one per dimension); reflection through a plane (three degrees, the freedom in orientation of this plane); or a "boost" in any of the three spatial directions (three degrees). Composition of transformations is the operation of the Poincaré group, with rotations being produced as the composition of an even number of reflections.

In classical physics, the Galilean group is a comparable ten-parameter group that acts on absolute time and space. Instead of boosts, it features shear mappings to relate co-moving frames of reference.

In general relativity, i.e. under the effects of gravity, Poincaré symmetry applies only locally. A treatment of symmetries in general relativity is not in the scope of this article.

Poincaré symmetry

Poincaré symmetry is the full symmetry of special relativity. It includes:

The last two symmetries, J and K, together make the Lorentz group (see also Lorentz invariance); the semi-direct product of the spacetime translations group and the Lorentz group then produce the Poincaré group. Objects that are invariant under this group are then said to possess Poincaré invariance or relativistic invariance.

10 generators (in four spacetime dimensions) associated with the Poincaré symmetry, by Noether's theorem, imply 10 conservation laws:[4][5]

  • 1 for the energy – associated with translations through time
  • 3 for the momentum – associated with translations through spatial dimensions
  • 3 for the angular momentum – associated with rotations between spatial dimensions
  • 3 for a quantity involving the velocity of the center of mass – associated with hyperbolic rotations between each spatial dimension and time

Poincaré group

The Poincaré group is the group of Minkowski spacetime isometries. It is a ten-dimensional noncompact Lie group. The four-dimensional abelian group of spacetime translations is a normal subgroup, while the six-dimensional Lorentz group is also a subgroup, the stabilizer of the origin. The Poincaré group itself is the minimal subgroup of the affine group which includes all translations and Lorentz transformations. More precisely, it is a semidirect product of the spacetime translations group and the Lorentz group,

with group multiplication

.[6]

Another way of putting this is that the Poincaré group is a group extension of the Lorentz group by a vector representation of it; it is sometimes dubbed, informally, as the inhomogeneous Lorentz group. In turn, it can also be obtained as a group contraction of the de Sitter group SO(4, 1) ~ Sp(2, 2), as the de Sitter radius goes to infinity.

Its positive energy unitary irreducible representations are indexed by mass (nonnegative number) and spin (integer or half integer) and are associated with particles in quantum mechanics (see Wigner's classification).

In accordance with the Erlangen program, the geometry of Minkowski space is defined by the Poincaré group: Minkowski space is considered as a homogeneous space for the group.

In quantum field theory, the universal cover of the Poincaré group

which may be identified with the double cover

is more important, because representations of are not able to describe fields with spin 1/2; i.e. fermions. Here is the group of complex matrices with unit determinant, isomorphic to the Lorentz-signature spin group .

Poincaré algebra

The Poincaré algebra is the Lie algebra of the Poincaré group. It is a Lie algebra extension of the Lie algebra of the Lorentz group. More specifically, the proper (), orthochronous () part of the Lorentz subgroup (its identity component), , is connected to the identity and is thus provided by the exponentiation of this Lie algebra. In component form, the Poincaré algebra is given by the commutation relations:[7][8]

where is the generator of translations, is the generator of Lorentz transformations, and is the Minkowski metric (see Sign convention).

A diagram of the commutation structure of the Poincaré algebra. The edges of the diagram connect generators with nonzero commutators.

The bottom commutation relation is the ("homogeneous") Lorentz group, consisting of rotations, , and boosts, . In this notation, the entire Poincaré algebra is expressible in noncovariant (but more practical) language as

where the bottom line commutator of two boosts is often referred to as a "Wigner rotation". The simplification permits reduction of the Lorentz subalgebra to and efficient treatment of its associated representations. In terms of the physical parameters, we have

The Casimir invariants of this algebra are and where is the Pauli–Lubanski pseudovector; they serve as labels for the representations of the group.

The Poincaré group is the full symmetry group of any relativistic field theory. As a result, all elementary particles fall in representations of this group. These are usually specified by the four-momentum squared of each particle (i.e. its mass squared) and the intrinsic quantum numbers , where is the spin quantum number, is the parity and is the charge-conjugation quantum number. In practice, charge conjugation and parity are violated by many quantum field theories; where this occurs, and are forfeited. Since CPT symmetry is invariant in quantum field theory, a time-reversal quantum number may be constructed from those given.

As a topological space, the group has four connected components: the component of the identity; the time reversed component; the spatial inversion component; and the component which is both time-reversed and spatially inverted.[9]

Other dimensions

The definitions above can be generalized to arbitrary dimensions in a straightforward manner. The d-dimensional Poincaré group is analogously defined by the semi-direct product

with the analogous multiplication

.[6]

The Lie algebra retains its form, with indices µ and ν now taking values between 0 and d − 1. The alternative representation in terms of Ji and Ki has no analogue in higher dimensions.

See also

Notes

  1. ^ Poincaré, Henri (1905-12-14), "Sur la dynamique de l'électron" , Rendiconti del Circolo Matematico di Palermo, 21: 129–176, Bibcode:1906RCMP...21..129P, doi:10.1007/bf03013466, hdl:2027/uiug.30112063899089, S2CID 120211823 (Wikisource translation: On the Dynamics of the Electron). The group defined in this paper would now be described as the homogeneous Lorentz group with scalar multipliers.
  2. ^ Minkowski, Hermann, "Die Grundgleichungen für die elektromagnetischen Vorgänge in bewegten Körpern" , Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse: 53–111 (Wikisource translation: The Fundamental Equations for Electromagnetic Processes in Moving Bodies).
  3. ^ Minkowski, Hermann, "Raum und Zeit" , Physikalische Zeitschrift, 10: 75–88
  4. ^ "Survey of Symmetry and Conservation Laws: More Poincare" (PDF). frankwilczek.com. Retrieved 2021-02-14.
  5. ^ Barnett, Stephen M (2011-06-01). "On the six components of optical angular momentum". Journal of Optics. 13 (6): 064010. Bibcode:2011JOpt...13f4010B. doi:10.1088/2040-8978/13/6/064010. ISSN 2040-8978. S2CID 55243365.
  6. ^ a b Oblak, Blagoje (2017-08-01). BMS Particles in Three Dimensions. Springer. p. 80. ISBN 9783319618784.
  7. ^ N.N. Bogolubov (1989). General Principles of Quantum Field Theory (2nd ed.). Springer. p. 272. ISBN 0-7923-0540-X.
  8. ^ T. Ohlsson (2011). Relativistic Quantum Physics: From Advanced Quantum Mechanics to Introductory Quantum Field Theory. Cambridge University Press. p. 10. ISBN 978-1-13950-4324.
  9. ^ "Topics: Poincaré Group". www.phy.olemiss.edu. Retrieved 2021-07-18.

References

Read other articles:

Pengendalian pesawat udara saat terbang dikontrol dalam tiga sumbu, yaitu sumbu lateral, sumbu longitudinal dan sumbu vertikal, oleh bidang-bidang kendali (Inggris: flight control surfacescode: en is deprecated ). Bidang-bidang kendali ini memandu pesawat udara selama terbang mulai lepas landas, menanjak, menjelajah, menurun sampai mendarat. Deskripsi Flight control surfaces of Boeing 727 Bidang kendali penerbangan dibagi dalam tiga kelompok utama, yaitu bidang kendali utama, bidang kendali s...

 

1868 Arkansas election for governor 1868 Arkansas gubernatorial election ← 1864 (Union) 13 March 1868 1872 →   Nominee Powell Clayton Party Republican Percentage 100.00% Governor before election Isaac Murphy Independent Elected Governor Powell Clayton Republican Elections in Arkansas Federal government Presidential elections 1836 1840 1844 1848 1852 1856 1860 1868 1872 1876 1880 1884 1888 1892 1896 1900 1904 1908 1912 1916 1920 1924 1928 1932 1936 1940 1944 1948 195...

 

2004 film by Atsuko Ishizuka This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (May 2019) (Learn how and when to remove this template message) Tsuki no WaltzDirected byAtsuko IshizukaWritten byAtsuko IshizukaMusic byVocals byMio IsayamaComposition byMio IsayamaArrangement byJun AbeLyrics byReiko YukawaRelease dateOctober 2004Running time4 minutes 40 secondsCount...

Pour les articles homonymes, voir Hakim. Cet article est une ébauche concernant l’islam et l’Égypte. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Al-Hakim IIFonctionCalife abbassideBiographieNaissance Date inconnueLe CaireDécès 1352Activité Homme politiquePère Al-Mustakfi IerFratrie Al-Mu'tadid Iermodifier - modifier le code - modifier Wikidata Abû al-`Abbas Ahmad al-Hâkim bi-Amr Al...

 

German artist Georg BaselitzGeorg Baselitz in a photograph by Oliver MarkBorn (1938-01-23) 23 January 1938 (age 86)Deutschbaselitz, GermanyNationalityGerman, AustrianKnown forPainting, sculpture, graphic designMovementNeo-expressionismSpouseJohanna Elke Kretzschmar Georg Baselitz (born 23 January 1938) is a German painter, sculptor and graphic artist. In the 1960s he became well known for his figurative, expressive paintings. In 1969 he began painting his subjects upside down in an ...

 

Unitary authority area in England Unitary authority area in EnglandNorth YorkshireUnitary authority areaRipon, the only city in the district and its third-largest settlement.Shown within the ceremonial county of North YorkshireSovereign stateUnited KingdomCountryEnglandRegionYorkshire and the HumberCeremonial countyNorth YorkshireHistoric countyYorkshireUnitary Authority1 April 2023SeatNorthallertonGovernment • TypeUnitary authority • Local AuthorityNorth Yorkshire Cou...

TipeharianFormatkoranPemilikHearst CorporationPenerbitJack SweeneyRedaksiJeff CohenDidirikan1901PusatHouston, Texas, Amerika Serikat Amerika SerikatSirkulasi surat kabar494.131 edisi harian632.797 edisi Minggu[1]ISSN1074-7109Situs webchron.com Houston Chronicle adalah surat kabar beroplah terbesar di negara bagian Texas, Amerika Serikat. Pada bulan September 2008, surat kabar ini menempati peringkat ke-9 surat kabar beroplah terbesar di Amerika Serikat.[2] Houston Chronic...

 

Kekhanan Uighur744–840[1] BenderaStatusKekhagananIbu kotaOrdu BaliqBahasa yang umum digunakanBahasa Uighur KunoAgama ManiismePemerintahanMonarkiKhagan Uyghur • 744–747 Qutlugh Bilge Köl• 841–847 Öge Khan Sejarah • Didirikan 744• Dibubarkan 840[1] Luas800[2][3]3.000.000 km2 (1.200.000 sq mi) Didahului oleh Digantikan oleh Kekhaganan Turkik Kedua Turgesh Kekhanan Kara-Khanid Yenisei Kirghiz Sunting...

 

When I Look at YouSingel oleh Miley Cyrusdari album The Time of Our LivesDirilis1 Maret 2010FormatCD single, digital downloadDirekam2009; 3180 Media Group(Savannah, Georgia)[1]GenrePopDurasi4:09LabelHollywoodPenciptaHillary Lindsey, John ShanksProduserJohn Shanks When I Look at You adalah lagu yang dinyanyikan oleh artis Amerika dan Miley Cyrus. Lagu ini ditulis oleh John Shanks dan Hillary Lindsey dan diproduksi oleh Shanks. Album ini dirilis pada tanggal 1 Maret 2010 oleh Hollywood ...

United States historic placeGlobe Tobacco BuildingU.S. National Register of Historic Places Location407 E. Fort St.,Detroit, MichiganCoordinates42°19′59″N 83°2′34″W / 42.33306°N 83.04278°W / 42.33306; -83.04278Built1888ArchitectWilliam Scott & CompanyArchitectural styleRomanesqueNRHP reference No.84000442[1]Added to NRHPNovember 13, 1984 The Globe Tobacco Building is a manufacturing building located at 407 East Fort Street in Down...

 

  اليمن الجمهورية اليمنية اليمنعلم اليمن اليمنشعار اليمن موقع اليمن باللون الأحمر في جنوب غرب شبه الجزيرة العربية الشعار الوطنيالله، الوطن، الثورة، الوحدة النشيد: رددي أيتها الدنيا نشيدي الأرض والسكان إحداثيات 15°30′N 48°00′E / 15.5°N 48°E / 15.5; 48   [1] أعلى ق�...

 

رستم فرخزاد   معلومات شخصية الميلاد القرن 7  أدرباداجان  الوفاة سنة 636   القادسية  سبب الوفاة قتل في معركة  قتله زهير بن عبد شمس[1]  مواطنة الإمبراطورية الساسانية  الأب فرخ هرمز  إخوة وأخوات فرخزاد  أقرباء سرخاب الأول (ابن الأخ)إسفندياذ (ابن الأخ)&#...

Emblème (mon) du clan Imagawa. Le clan Imagawa est une lignée de daimyos du Japon médiéval, descendant de l'empereur Seiwa (850-880). Imagawa Kuniuji, lui-même petit-fils d'Ashikaga Yoshiuji, s'installe à Imagawa (province de Mikawa) au XIIIe siècle et prend le nom du lieu. Cette famille gouvernera les provinces de Suruga et Tōtōmi du XIVe siècle au XVIe siècle et leur influence inclura également la province de Mikawa pendant la jeunesse de Ieyasu Tokugawa. Le pouvo...

 

Village in Illinois, United StatesLeaf RiverVillageSign seen when entering Leaf RiverLocation of Leaf River in Ogle County, Illinois.Leaf RiverLocation within Ogle CountyShow map of Ogle County, IllinoisLeaf RiverLeaf River (Illinois)Show map of IllinoisCoordinates: 42°07′35″N 89°24′11″W / 42.12639°N 89.40306°W / 42.12639; -89.40306CountryUnited StatesStateIllinoisCountyOgleTownshipLeaf RiverGovernment • Village PresidentTimothy Morris (R)Area&...

 

乔冠华 中华人民共和国外交部部长 中国人民对外友好协会顾问 任期1974年11月—1976年12月总理周恩来 → 华国锋前任姬鹏飞继任黄华 个人资料性别男出生(1913-03-28)1913年3月28日 中華民國江蘇省盐城县逝世1983年9月22日(1983歲—09—22)(70歲) 中华人民共和国北京市籍贯江蘇鹽城国籍 中华人民共和国政党 中国共产党配偶明仁(1940年病逝) 龚澎(1970年病逝) 章含�...

Town in Massachusetts, United StatesDedham, MassachusettsTownTown of DedhamThe Ames Schoolhouse, Dedham's Town Hall FlagSealMotto: ContentmentLocation of Dedham in Norfolk County, MassachusettsCoordinates: 42°14′30″N 71°10′00″W / 42.24167°N 71.16667°W / 42.24167; -71.16667CountryUnited StatesStateMassachusettsCountyNorfolkSettled1635Incorporated1636Named forDedham, EssexGovernment • TypeRepresentative town meeting • Town &...

 

SancourtcomuneSancourt – Veduta LocalizzazioneStato Francia Regione Normandia Dipartimento Eure ArrondissementLes Andelys CantoneGisors TerritorioCoordinate49°21′N 1°41′E49°21′N, 1°41′E (Sancourt) Superficie6,47 km² Abitanti154[1] (2009) Densità23,8 ab./km² Altre informazioniCod. postale27150 Fuso orarioUTC+1 Codice INSEE27614 CartografiaSancourt Modifica dati su Wikidata · Manuale Sancourt è un comune francese di 154 abitanti situato nel di...

 

Irish and British peer (1945–2019) Shaun James Christian Welbore Ellis Agar, 6th Earl of Normanton (21 August 1945 – 13 February 2019) was an Irish and British peer, soldier, landowner, and powerboat racer. From birth until 1967 he was known by the courtesy title of Viscount Somerton. As Baron Somerton of Somerley and later as Baron Mendip he was a member of the House of Lords from 1967 until the reform of the Lords in 1999. Early life Normanton was the elder son of Edward John Sidney Chr...

Multirole combat aircraft Not to be confused with strike aircraft, an alternative term for an attack aircraft. For the video game called Strike Fighter, see After Burner III. A USAF F-15E Strike Eagle dropping a GBU-28 precision guided bomb. In current military parlance, a strike fighter is a multirole combat aircraft designed to operate both as an attack aircraft and as an air superiority fighter. As a category, it is distinct from fighter-bombers, and is closely related to the concept of in...

 

Luigi CampanellaNazionalità Italia Altezza164 cm Lotta SpecialitàLotta greco-romana CategoriaPesi piuma Squadra S. G. L. Cristoforo Colombo CarrieraNazionale Italia Statistiche aggiornate al 22 gennaio 2022 Modifica dati su Wikidata · Manuale Luigi Campanella, noto anche con il soprannome Luisito e il nome di battaglia Campione (San Siro di Struppa, 4 novembre 1918[1] – Genova, 6 giugno 2018), è stato un lottatore e partigiano italiano, specializzato nello sti...