Theorem of the highest weight

In representation theory, a branch of mathematics, the theorem of the highest weight classifies the irreducible representations of a complex semisimple Lie algebra .[1][2] There is a closely related theorem classifying the irreducible representations of a connected compact Lie group .[3] The theorem states that there is a bijection

from the set of "dominant integral elements" to the set of equivalence classes of irreducible representations of or . The difference between the two results is in the precise notion of "integral" in the definition of a dominant integral element. If is simply connected, this distinction disappears.

The theorem was originally proved by Élie Cartan in his 1913 paper.[4] The version of the theorem for a compact Lie group is due to Hermann Weyl. The theorem is one of the key pieces of representation theory of semisimple Lie algebras.

Statement

Lie algebra case

Let be a finite-dimensional semisimple complex Lie algebra with Cartan subalgebra . Let be the associated root system. We then say that an element is integral[5] if

is an integer for each root . Next, we choose a set of positive roots and we say that an element is dominant if for all . An element dominant integral if it is both dominant and integral. Finally, if and are in , we say that is higher[6] than if is expressible as a linear combination of positive roots with non-negative real coefficients.

A weight of a representation of is then called a highest weight if is higher than every other weight of .

The theorem of the highest weight then states:[2]

  • If is a finite-dimensional irreducible representation of , then has a unique highest weight, and this highest weight is dominant integral.
  • If two finite-dimensional irreducible representations have the same highest weight, they are isomorphic.
  • For each dominant integral element , there exists a finite-dimensional irreducible representation with highest weight .

The most difficult part is the last one; the construction of a finite-dimensional irreducible representation with a prescribed highest weight.

The compact group case

Let be a connected compact Lie group with Lie algebra and let be the complexification of . Let be a maximal torus in with Lie algebra . Then is a Cartan subalgebra of , and we may form the associated root system . The theory then proceeds in much the same way as in the Lie algebra case, with one crucial difference: the notion of integrality is different. Specifically, we say that an element is analytically integral[7] if

is an integer whenever

where is the identity element of . Every analytically integral element is integral in the Lie algebra sense,[8] but there may be integral elements in the Lie algebra sense that are not analytically integral. This distinction reflects the fact that if is not simply connected, there may be representations of that do not come from representations of . On the other hand, if is simply connected, the notions of "integral" and "analytically integral" coincide.[3]

The theorem of the highest weight for representations of [9] is then the same as in the Lie algebra case, except that "integral" is replaced by "analytically integral."

Proofs

There are at least four proofs:

  • Hermann Weyl's original proof from the compact group point of view,[10] based on the Weyl character formula and the Peter–Weyl theorem.
  • The theory of Verma modules contains the highest weight theorem. This is the approach taken in many standard textbooks (e.g., Humphreys and Part II of Hall).
  • The Borel–Weil–Bott theorem constructs an irreducible representation as the space of global sections of an ample line bundle; the highest weight theorem results as a consequence. (The approach uses a fair bit of algebraic geometry but yields a very quick proof.)
  • The invariant theoretic approach: one constructs irreducible representations as subrepresentations of a tensor power of the standard representations. This approach is essentially due to H. Weyl and works quite well for classical groups.

See also

Notes

  1. ^ Dixmier 1996, Theorem 7.2.6.
  2. ^ a b Hall 2015 Theorems 9.4 and 9.5
  3. ^ a b Hall 2015 Theorem 12.6
  4. ^ Knapp, A. W. (2003). "Reviewed work: Matrix Groups: An Introduction to Lie Group Theory, Andrew Baker; Lie Groups: An Introduction through Linear Groups, Wulf Rossmann". The American Mathematical Monthly. 110 (5): 446–455. doi:10.2307/3647845. JSTOR 3647845.
  5. ^ Hall 2015 Section 8.7
  6. ^ Hall 2015 Section 8.8
  7. ^ Hall 2015 Definition 12.4
  8. ^ Hall 2015 Proposition 12.7
  9. ^ Hall 2015 Corollary 13.20
  10. ^ Hall 2015 Chapter 12

References

Read other articles:

This article is about the city in Florida. For other uses, see Fort Pierce (disambiguation). City in Florida, United StatesFort Pierce, FloridaCityCity of Fort Pierce SealNickname: Sunrise CityLocation in St. Lucie County and the state of FloridaCoordinates: 27°26′20″N 80°20′8″W / 27.43889°N 80.33556°W / 27.43889; -80.33556Country United StatesState FloridaCountySt. LucieGovernment • MayorLinda HudsonArea[1] • Total29.84...

 

Ground vortex formed from a downburst of a thunderstorm This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Gustnado – news · newspapers · books · scholar · JSTOR (August 2011) (Learn how and when to remove this template message) A gustnado near Williamstown, Kansas on April 3, 2011. This gustnado is a good exam...

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Desember 2023. Shunichi IkenoueInformasi pribadiNama lengkap Shunichi IkenoueTanggal lahir 16 Februari 1967 (umur 57)Tempat lahir Prefektur, JepangPosisi bermain GelandangKarier senior*Tahun Tim Tampil (Gol)1989-1990 Matsushita Electric 1990-1993 Yokohama Flüg...

IX legislaturaStato Italia ElezioniPolitiche 1983 Inizio12 luglio 1983 Fine1º luglio 1987 Capo di StatoSandro Pertini (1983-1985)Francesco Cossiga (1985-1987) GoverniCraxi I (1983-1986)Craxi II (1986-1987)Fanfani VI (1987) Camera dei deputatiPresidenteNilde Iotti (PCI) Membri630 deputati DC225 / 630 PCI198 / 630 PSI73 / 630 MSI-DN42 / 630 PRI29 / 630 PSDI23 / 630 PLI13 / 630 PR11 / 630 DP7 / 630 Senato della RepubblicaPresidenteFrancesco Cossiga (DC)Amintore Fanfani (DC)Giovanni Malagod...

 

Sianida Nama Nama IUPAC (sistematis) Anion sianida Penanda Model 3D (JSmol) Gambar interaktif 3DMet {{{3DMet}}} ChEBI CHEBI:17514 ChemSpider 5755 Nomor EC PubChem CID 5975 Nomor RTECS {{{value}}} InChI InChI=1S/CN/c1-2/q-1Key: XFXPMWWXUTWYJX-UHFFFAOYSA-N SMILES [C-]#N Sifat Rumus kimia CN− Massa molar 26,02 g·mol−1 Kecuali dinyatakan lain, data di atas berlaku pada suhu dan tekanan standar (25 °C [77 °F], 100 kPa). Referensi Sianida adalah senyawa...

 

У этого термина существуют и другие значения, см. Европа (значения). Европа Спутник Изображение Европы в естественных цветах, снятое JunoCam КА «Юнона» Другие названия Юпитер II Открытие[1] Первооткрыватель Галилео Галилей Место открытия Падуанский университет, Италия...

Swiss cyclist Rubens BertogliatiBertogliati in 2014Personal informationFull nameRubens BertogliatiBorn (1979-05-09) 9 May 1979 (age 44)Lugano, SwitzerlandHeight1.80 m (5 ft 11 in)Weight73.5 kg (162 lb; 11.57 st)Team informationCurrent teamRetiredDisciplineRoadRoleRiderRider typeAll-rounderProfessional teams2000–2003Lampre–Daikin2004–2008Saunier Duval–Prodir2009–2010Diquigiovanni–Androni2011–2012Team Type 1–Sanofi Aventis Major ...

 

Vilayet dello Yemen Vilayet dello Yemen - LocalizzazioneIl vilayet dello Yemen nell'anno 1900 Dati amministrativiNome completoVilâyet-i Yemen Nome ufficialeولايت یمن Lingue ufficialiturco ottomano Lingue parlateturco ottomano, arabo CapitaleSana'a Dipendente daImpero ottomano PoliticaForma di StatoVilayet Forma di governoVilayet elettivo dell'Impero ottomano Capo di StatoSultani ottomani Nascita1864 Fine1918 CausaArmistizio di Mudros Territorio e popolazioneBacino geograficoYemen Mas...

 

土库曼斯坦总统土库曼斯坦国徽土库曼斯坦总统旗現任谢尔达尔·别尔德穆哈梅多夫自2022年3月19日官邸阿什哈巴德总统府(Oguzkhan Presidential Palace)機關所在地阿什哈巴德任命者直接选举任期7年,可连选连任首任萨帕尔穆拉特·尼亚佐夫设立1991年10月27日 土库曼斯坦土库曼斯坦政府与政治 国家政府 土库曼斯坦宪法 国旗 国徽 国歌 立法機關(英语:National Council of Turkmenistan) ...

Part of a series onAntisemitism Part of Jewish history and discrimination History Timeline Reference Definitions IHRA definition of antisemitism Jerusalem Declaration on Antisemitism Nexus Document Three Ds Geography Argentina Australia Austria Belarus Belgium Canada Chinese Chilean Costa Rican Europe France Dreyfus affair 21st century 21st-century Germany Greece Hungary 21st-century Italy Japan New Zealand Norway Pakistan Palestine Romania Russia Imperial Russia Soviet Union Stalinist Saudi...

 

Andreas Schrott Informasi pribadiNama lengkap Andreas SchrottTanggal lahir 24 Agustus 1981 (umur 42)Tempat lahir Hall in Tirol, AustriaPosisi bermain Bek KiriInformasi klubKlub saat ini Admira WackerNomor 14Karier junior1987–1995 SV Absam1995–1996 Innsbrucker AC1996–2000 Tirol Innsbruck2000–2002 WSG WattensKarier senior*Tahun Tim Tampil (Gol)2002–2003 WSG Wattens 26 (7)2003–2005 Wacker Tirol 61 (2)2005–2006 Grazer AK 26 (1)2006–2010 Wacker Innsbruck 96 (4)2011 USK Anif 1...

 

1993 live album by Ozzy Osbourne For other uses, see Live and Loud. Live & LoudLive album by Ozzy OsbourneReleased15 June 1993Recorded1991–92GenreHeavy metalLength117:16LabelEpicOzzy Osbourne chronology No More Tears(1991) Live & Loud(1993) Ozzmosis(1995) Singles from Live & Loud Changes (live)Released: June 1993[1] Live & LoudVideo by Ozzy OsbourneReleased28 June 1993Recorded1991–92GenreHeavy metalLength112 minutes LabelEpic/SonyDirectorJeb BrienProducerJe...

Borutta BorùtaKomuneComune di BoruttaLokasi Borutta di Provinsi SassariNegaraItaliaWilayah SardiniaProvinsiSassari (SS)Pemerintahan • Wali kotaSilvano Quirico Salvatore ArruLuas • Total4,76 km2 (1,84 sq mi)Ketinggian471 m (1,545 ft)Populasi (2016) • Total287[1]Zona waktuUTC+1 (CET) • Musim panas (DST)UTC+2 (CEST)Kode pos07040Kode area telepon079Situs webhttp://www.comune.borutta.ss.it Borutta (bahasa Sardin...

 

Uskup MyrielTokoh Les MiserablesUskup Myriel seperti yang digambarkan oleh Gustave Brion di dalam edisi pertama novel Les MiserablesPenciptaVictor HugoInformasiJulukanMonseigneur BienvenuJenis kelaminLaki-lakiGelarUskupPekerjaanUskupKeluargaAyah tanpa nama (meninggal) Jenderal tanpa nama (saudara) Pejabat tanpa nama (saudara) Baptistine Myriel (saudara)PasanganIstri tanpa nama (meninggal)AgamaKatolikKewarganegaraanPrancisLahir1739Kematian1821 (umur 82) Uskup Charles-François-Bienvenu Myriel,...

 

مخطوطات يهودية قديمةقالب:SHORTDESC:مخطوطات يهودية قديمة مخطوطات البحر الميتمخطوطة المزامير العظيمة (11Q5)، واحد من 981 نص في مخطوطات البحر الميتمعلومات عامةمادة الإنشاء مخطوطات، برديات، نحاسخط الكتابة معظمها بالعبرية، وبعضها بالآرامية واليونانيةتاريخ الإنشاء ق. قرن 3 ق.م. – قر...

Geopolitical region Not to be confused with West Asia, MENA, or the Greater Middle East. For other uses, see Middle East (disambiguation). Middle EastArea7,207,575 km2 (2,782,860 sq mi)Population371 million (2010)[1]Countries UN members (16)  Bahrain  Cyprus  Egypt  Iran  Iraq  Israel  Jordan  Kuwait  Lebanon  Oman  Qatar  Saudi Arabia  Syria  Turkey  United Arab Emirates  Yemen UN observer ...

 

Potassium formate[1] Names Preferred IUPAC name Potassium formate Identifiers CAS Number 590-29-4 Y 3D model (JSmol) Interactive image ChemSpider 11054 N ECHA InfoCard 100.008.799 PubChem CID 11539 UNII 25I90B156L Y CompTox Dashboard (EPA) DTXSID6029626 InChI InChI=1S/CH2O2.K/c2-1-3;/h1H,(H,2,3);/q;+1/p-1 NKey: WFIZEGIEIOHZCP-UHFFFAOYSA-M NInChI=1/CH2O2.K/c2-1-3;/h1H,(H,2,3);/q;+1/p-1Key: WFIZEGIEIOHZCP-REWHXWOFAK SMILES C(=O)[O-].[K+] Properties Ch...

 

13-та зенітна дивізія (Третій Рейх)13. FlaK-Division Прапор командира дивізії ЛюфтваффеНа службі 16 січня 1942 — 8 травня 1945Країна  Третій РейхНалежність  ВермахтВид  ЛюфтваффеРоль Війська протиповітряної оборониЧисельність зенітна дивізіяУ складі Див. КомандуванняГ...

Halaman ini berisi artikel tentang pertempuran yang terjadi antara 1947 dan 1948. Untuk pengepungan lainnya di Yerusalem, lihat Pengepungan Yerusalem. Untuk pertempuran pada 1917, lihat Pertempuran Yerusalem. Pengepungan Yerusalem (1948)Bagian dari Perang Palestina 1948Legiun Arab menyerang Wilayah Yahudi di Yerusalem, Mei 1948.TanggalDecember 1947 – 18 July 1948LokasiYerusalemHasil SeriIsrael menduduki Yerusalem BaratYordania menduduki Yerusalem Timur, termasuk Kota LamaPihak terlibat ...

 

  لمعانٍ أخرى، طالع آيت إبراهيم (توضيح). آيت إبراهيم تقسيم إداري البلد المغرب  الجهة درعة تافيلالت الإقليم ميدلت الدائرة الريش الجماعة القروية غرس تعلالين المشيخة آيت عتو تيعلالين السكان التعداد السكاني 117 نسمة (إحصاء 2004)   • عدد الأسر 24 معلومات أخرى التوقيت ت ع م±...