Torsion (algebra)

In mathematics, specifically in ring theory, a torsion element is an element of a module that yields zero when multiplied by some non-zero-divisor of the ring. The torsion submodule of a module is the submodule formed by the torsion elements (in cases when this is indeed a submodule, such as when the ring is commutative). A torsion module is a module consisting entirely of torsion elements. A module is torsion-free if its only torsion element is the zero element.

This terminology is more commonly used for modules over a domain, that is, when the regular elements of the ring are all its nonzero elements.

This terminology applies to abelian groups (with "module" and "submodule" replaced by "group" and "subgroup"). This is just a special case of the more general situation, because abelian groups are modules over the ring of integers. (In fact, this is the origin of the terminology, which was introduced for abelian groups before being generalized to modules.)

In the case of groups that are noncommutative, a torsion element is an element of finite order. Contrary to the commutative case, the torsion elements do not form a subgroup, in general.

Definition

An element m of a module M over a ring R is called a torsion element of the module if there exists a regular element r of the ring (an element that is neither a left nor a right zero divisor) that annihilates m, i.e., rm = 0. In an integral domain (a commutative ring without zero divisors), every non-zero element is regular, so a torsion element of a module over an integral domain is one annihilated by a non-zero element of the integral domain. Some authors use this as the definition of a torsion element, but this definition does not work well over more general rings.

A module M over a ring R is called a torsion module if all its elements are torsion elements, and torsion-free if zero is the only torsion element.[1] If the ring R is commutative then the set of all torsion elements forms a submodule of M, called the torsion submodule of M, sometimes denoted T(M). If R is not commutative, T(M) may or may not be a submodule. It is shown in (Lam 2007) that R is a right Ore ring if and only if T(M) is a submodule of M for all right R-modules. Since right Noetherian domains are Ore, this covers the case when R is a right Noetherian domain (which might not be commutative).

More generally, let M be a module over a ring R and S be a multiplicatively closed subset of R. An element m of M is called an S-torsion element if there exists an element s in S such that s annihilates m, i.e., sm = 0. In particular, one can take for S the set of regular elements of the ring R and recover the definition above.

An element g of a group G is called a torsion element of the group if it has finite order, i.e., if there is a positive integer m such that gm = e, where e denotes the identity element of the group, and gm denotes the product of m copies of g. A group is called a torsion (or periodic) group if all its elements are torsion elements, and a torsion-free group if its only torsion element is the identity element. Any abelian group may be viewed as a module over the ring Z of integers, and in this case the two notions of torsion coincide.

Examples

  1. Let M be a free module over any ring R. Then it follows immediately from the definitions that M is torsion-free (if the ring R is not a domain then torsion is considered with respect to the set S of non-zero-divisors of R). In particular, any free abelian group is torsion-free and any vector space over a field K is torsion-free when viewed as a module over K.
  2. By contrast with example 1, any finite group (abelian or not) is periodic and finitely generated. Burnside's problem, conversely, asks whether a finitely generated periodic group must be finite. The answer is "no" in general, even if the period is fixed.
  3. The torsion elements of the multiplicative group of a field are its roots of unity.
  4. In the modular group, Γ obtained from the group SL(2, Z) of 2×2 integer matrices with unit determinant by factoring out its center, any nontrivial torsion element either has order two and is conjugate to the element S or has order three and is conjugate to the element ST. In this case, torsion elements do not form a subgroup, for example, S · ST = T, which has infinite order.
  5. The abelian group Q/Z, consisting of the rational numbers modulo 1, is periodic, i.e. every element has finite order. Analogously, the module K(t)/K[t] over the ring R = K[t] of polynomials in one variable is pure torsion. Both these examples can be generalized as follows: if R is an integral domain and Q is its field of fractions, then Q/R is a torsion R-module.
  6. The torsion subgroup of (R/Z, +) is (Q/Z, +) while the groups (R, +) and (Z, +) are torsion-free. The quotient of a torsion-free abelian group by a subgroup is torsion-free exactly when the subgroup is a pure subgroup.
  7. Consider a linear operator L acting on a finite-dimensional vector space V over the field K. If we view V as an K[L]-module in the natural way, then (as a result of many things, either simply by finite-dimensionality or as a consequence of the Cayley–Hamilton theorem), V is a torsion K[L]-module.

Case of a principal ideal domain

Suppose that R is a (commutative) principal ideal domain and M is a finitely generated R-module. Then the structure theorem for finitely generated modules over a principal ideal domain gives a detailed description of the module M up to isomorphism. In particular, it claims that

where F is a free R-module of finite rank (depending only on M) and T(M) is the torsion submodule of M. As a corollary, any finitely generated torsion-free module over R is free. This corollary does not hold for more general commutative domains, even for R = K[x,y], the ring of polynomials in two variables. For non-finitely generated modules, the above direct decomposition is not true. The torsion subgroup of an abelian group may not be a direct summand of it.

Torsion and localization

Assume that R is a commutative domain and M is an R-module. Let Q be the field of fractions of the ring R. Then one can consider the Q-module

obtained from M by extension of scalars. Since Q is a field, a module over Q is a vector space, possibly infinite-dimensional. There is a canonical homomorphism of abelian groups from M to MQ, and the kernel of this homomorphism is precisely the torsion submodule T(M). More generally, if S is a multiplicatively closed subset of the ring R, then we may consider localization of the R-module M,

which is a module over the localization RS. There is a canonical map from M to MS, whose kernel is precisely the S-torsion submodule of M. Thus the torsion submodule of M can be interpreted as the set of the elements that "vanish in the localization". The same interpretation continues to hold in the non-commutative setting for rings satisfying the Ore condition, or more generally for any right denominator set S and right R-module M.

Torsion in homological algebra

The concept of torsion plays an important role in homological algebra. If M and N are two modules over a commutative domain R (for example, two abelian groups, when R = Z), Tor functors yield a family of R-modules Tori(M,N). The S-torsion of an R-module M is canonically isomorphic to TorR1(MRS/R) by the exact sequence of TorR*: The short exact sequence of R-modules yields an exact sequence , and hence is the kernel of the localisation map of M. The symbol Tor denoting the functors reflects this relation with the algebraic torsion. This same result holds for non-commutative rings as well as long as the set S is a right denominator set.

Abelian varieties

The 4-torsion subgroup of an elliptic curve over the complex numbers.

The torsion elements of an abelian variety are torsion points or, in an older terminology, division points. On elliptic curves they may be computed in terms of division polynomials.

See also

References

  1. ^ Roman 2008, p. 115, §4

Sources

  • Ernst Kunz, "Introduction to Commutative algebra and algebraic geometry", Birkhauser 1985, ISBN 0-8176-3065-1
  • Irving Kaplansky, "Infinite abelian groups", University of Michigan, 1954.
  • Michiel Hazewinkel (2001) [1994], "Torsion submodule", Encyclopedia of Mathematics, EMS Press
  • Lam, Tsit Yuen (2007), Exercises in modules and rings, Problem Books in Mathematics, New York: Springer, pp. xviii+412, doi:10.1007/978-0-387-48899-8, ISBN 978-0-387-98850-4, MR 2278849
  • Roman, Stephen (2008), Advanced Linear Algebra, Graduate Texts in Mathematics (Third ed.), Springer, p. 446, ISBN 978-0-387-72828-5.

Read other articles:

Professional wrestler Mark DavisDavis in 2023, during his simultaneous reigns as both IWGP Tag Team Champion and Strong Openweight Tag Team Champion alongside Kyle FletcherBirth nameDavis PassfieldBorn (1990-08-20) 20 August 1990 (age 33)[1]Queensland, AustraliaProfessional wrestling careerRing name(s)Mark DavisBilled height6 ft 4 in (1.93 m)[2]Billed weight240 lb (110 kg)[2]Trained byTravis BanksDebut2007[2] Davis Passfield (born 20 Au...

 

Coracina Black-faced cuckooshrike (Coracina novaehollandiae)TaksonomiKerajaanAnimaliaFilumChordataKelasAvesOrdoPasseriformesFamiliCampephagidaeGenusCoracina Vieillot, 1816 Speciessee article.lbs Kepudang-sungu besar ( Coracina macei ) Coracina adalah genus burung besar dalam Campephagidae yang umum dikenal dengan nama kepudang-sungu. Genus ini diperkenalkan oleh ahli burung Perancis Louis Vieillot pada tahun [1] Jenis spesies ini kemudian ditetapkan sebagai kepudang-sungu kartula oleh...

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: 2016 Kirklees Metropolitan Borough Council election – news · newspapers · books · scholar · JSTOR (April 2016) (Learn how and when to remove this template message) 2016 local election results in Kirklees The 2016 Kirklees Metropolitan Borough Council election t...

КанадаЭта статья посвященаполитике КанадыИсполнительная власть Корона Генерал-губернатор (Мэри Саймон) Тайный совет Короля для Канады(Председатель[en] — Харджит Саджан)) Премьер-министр (Джастин Трюдо) Правительство (29-е) Министерства Законодательная власть Корона П...

 

Pour les articles homonymes, voir Montreuil. Chiré-en-Montreuil La mairie. Administration Pays France Région Nouvelle-Aquitaine Département Vienne Arrondissement Poitiers Intercommunalité Communauté de communes du Haut-Poitou Maire Mandat Ibrahim Bichara 2020-2026 Code postal 86190 Code commune 86074 Démographie Gentilé Chiréens Populationmunicipale 924 hab. (2021 ) Densité 43 hab./km2 Géographie Coordonnées 46° 38′ 23″ nord, 0° 07′ 38″...

 

Talitha CumiEpisode The X-FilesNomor episodeMusim 3Episode 24SutradaraR. W. GoodwinTeleplayChris CarterPengarangDavid DuchovnyChris CarterKode produksi3X24Tanggal siar17 Mei 1996Durasi44 menitBintang tamu Mitch Pileggi sebagai Walter Skinner William B. Davis sebagai The Smoking Man Steven Williams sebagai X Roy Thinnes sebagai Jeremiah Smith Brian Thompson sebagai The Bounty Hunter Rebecca Toolan sebagai Teena Mulder Jerry Hardin sebagai Deep Throat Peter Donat sebagai William Mulder Ste...

† Человек прямоходящий Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:Синапсиды...

 

Pour les articles homonymes, voir JFC. Juventus FC Généralités Nom complet Juventus Turin Football Club S.p.A. Surnoms La Vecchia Signora[1] (La Vieille Dame) I Bianconeri [2](Les Blanc et Noir)La Gobba (La Bossue)Zebre[3] Noms précédents Sport Club Juventus (1897-1900) Foot-Ball Club Juventus (1900-1936) Juventus (1936-1942) Juventus-Cisitalia (1942-1945) Fondation 1er novembre 1897 (126 ans) Statut professionnel Depuis 1929 Couleurs Blanc et Noir Stade Allianz Stadium (41 50...

 

13e régiment d’artillerie Insigne du 13e régiment d’artillerie (vers 1939). Création 1833 Pays France Branche Armée de Terre Type régiment d’artillerie Inscriptionssur l’emblème Constantine 1837Zaatcha 1849Sébastopol 1854-1855Solférino 1859Extrême-Orient 1885La Somme 1916L'Aisne 1917-1918 Guerres Conquête de l'AlgérieGuerre de CriméeCampagne d'Italie (1859)Guerre de 1870Guerre de la CommuneConquête de la TunisieExpédition du TonkinPremière Guerre mondialeSeco...

American businessman (born 1942) Forrest LucasLucas in 2011BornFebruary 1942 (age 82)Ramsey, Indiana, U.S.Political partyRepublicanSpouseCharlotte Lucas (1982–present)Children7 Forrest Lucas (born February 1942) is an American businessman, the founder of Lucas Oil. Early life Lucas was born in February 1942,[1] in Ramsey, Indiana, where he grew up, the eldest of four children.[2] His parents Raymond and Marie had a small farm in Elkinsville, where he and his three ...

 

Human settlement in EnglandGeldestonSt Michael's ChurchGeldestonLocation within NorfolkArea3.40 km2 (1.31 sq mi)Population397 2011• Density117/km2 (300/sq mi)OS grid referenceTM390914• London96 miles (154 km)Civil parishGeldestonDistrictSouth NorfolkShire countyNorfolkRegionEastCountryEnglandSovereign stateUnited KingdomPost townBECCLESPostcode districtNR34Dialling code01508PoliceNorfolkFireNorfolkAmbulanceEast of Engl...

 

2002 anthology by Stephen Baxter Evolution First edition coverAuthorStephen BaxterCountryUnited KingdomLanguageEnglishGenreScience fiction novelPublisherOrion Publishing GroupPublication date2002Media typePrint (hardback & paperback)Pages592 (DelRey Hardcover ed.)ISBN0-575-07342-X (first edition, paperback) & ISBN 0-575-07341-1 (hardback edition)OCLC50527130 Evolution is a collection of short stories that work together to form an episodic science fiction novel by author Step...

Islamic NGO based in Mecca Logo of the MWL Part of a series onIslam Beliefs Oneness of God Angels Revealed Books Prophets Day of Resurrection Predestination Practices Profession of Faith Prayer Almsgiving Fasting Pilgrimage TextsFoundations Quran Sunnah (Hadith, Sirah) Tafsir (exegesis) Aqidah (creed) Qisas al-Anbiya (Stories of the Prophets) Mathnawi (Poems) Fiqh (jurisprudence) Sharia (law) History Timeline Muhammad Ahl al-Bayt Sahabah Rashidun Caliphate Imamate Medieval Islamic science Spr...

 

American politician Howard WolpeMember of the U.S. House of Representativesfrom Michigan's 3rd districtIn officeJanuary 3, 1979 – January 3, 1993Preceded byGarry BrownSucceeded byPaul HenryMember of the Michigan House of Representativesfrom the 46th districtIn officeJanuary 1, 1973 – December 31, 1976Preceded byWilliam V. WeberSucceeded byMary C. Brown Personal detailsBornHoward Eliot Wolpe(1939-11-03)November 3, 1939Los Angeles, California, U.S.D...

 

Call of the CanyonPoster rilis teatrikalSutradaraJoseph SantleyProduserHarry GreySkenarioOlive CooperCerita Maurice Rapf Olive Cooper Pemeran Gene Autry Smiley Burnette Sons of the Pioneers Ruth Terry Penata musikRaoul Kraushaar (supervisor)SinematograferReggie LanningPenyuntingEdward MannPerusahaanproduksiRepublic PicturesDistributorRepublic PicturesTanggal rilis 17 Agustus 1942 (1942-08-17) (Amerika Serikat) Durasi71 menit[1]NegaraAmerika SerikatBahasaInggrisAnggaran$...

Larus fuscus Larus fuscus Goéland brun adulte bagué.Classification COI Règne Animalia Embranchement Chordata Sous-embr. Vertebrata Classe Aves Ordre Charadriiformes Famille Laridae Genre Larus Statut de conservation UICN LC  : Préoccupation mineure EspèceLarus fuscusLinnaeus 1758 Juvénile Le Goéland brun (Larus fuscus) est une espèce d'oiseaux de la famille des Laridae. Son aire de nidification s'étend de l'Islande vers l'est sur une grande partie des côtes européennes ju...

 

United States government designation for food additives GRAS redirects here. For other uses, see Gras (disambiguation). Not to be confused with Generally recognized as safe and effective. Food safety Terms Foodborne illness Good manufacturing practice (GMP) Hazard analysis and critical control points (HACCP) Hazard analysis and risk-based preventive controls (HARPC) Critical control point Critical factors FAT TOM pH Water activity (aw) Bacterial pathogens Clostridium botulinum Escherichia col...

 

Ecuadorian businessman and politician In this Spanish name, the first or paternal surname is Kronfle and the second or maternal family name is Kozhaya. Henry KronfleKronfle in 2024President of the National AssemblyIncumbentAssumed office 18 November 2023Preceded byVirgilio Saquicela Personal detailsBorn1972 (age 51–52)Guayaquil, EcuadorPolitical partySocial Christian PartyOccupationPoliticianbusinessman Henry Fabián Kronfle Kozhaya (born 1972)[1] is an Ecuadori...

Dutch painter Pieter LastmanBorn1583 (1583)Died1633 (aged 49–50)AmsterdamResting placeOude KerkNationalityDutchKnown forBeing the teacher of RembrandtStyleBiblical landscapes Pieter Lastman, The Angel Raphael Takes Leave of Old Tobit and his Son Tobias[1] Pieter Lastman (1583–1633) was a Dutch painter.[1] Lastman is considered important because of his work as a painter of history pieces and because his pupils included Rembrandt and Jan Lievens.[2] In his...

 

الموجة النسوية الثانيةمعلومات عامةصنف فرعي من نسوية البلد الولايات المتحدة تاريخ البدء عقد 1960 تاريخ الانتهاء عقد 1980 الموجة النسوية الأولى الموجة النسوية الثالثة تعديل - تعديل مصدري - تعديل ويكي بيانات جزء من سلسلة مقالات حولالحقوق النسوية المرأة والأنثويةامرأة . أنوثة ال...