Annihilator (ring theory)

In mathematics, the annihilator of a subset S of a module over a ring is the ideal formed by the elements of the ring that give always zero when multiplied by each element of S.

Over an integral domain, a module that has a nonzero annihilator is a torsion module, and a finitely generated torsion module has a nonzero annihilator.

The above definition applies also in the case of noncommutative rings, where the left annihilator of a left module is a left ideal, and the right-annihilator, of a right module is a right ideal.

Definitions

Let R be a ring, and let M be a left R-module. Choose a non-empty subset S of M. The annihilator of S, denoted AnnR(S), is the set of all elements r in R such that, for all s in S, rs = 0.[1] In set notation,

for all

It is the set of all elements of R that "annihilate" S (the elements for which S is a torsion set). Subsets of right modules may be used as well, after the modification of "sr = 0" in the definition.

The annihilator of a single element x is usually written AnnR(x) instead of AnnR({x}). If the ring R can be understood from the context, the subscript R can be omitted.

Since R is a module over itself, S may be taken to be a subset of R itself, and since R is both a right and a left R-module, the notation must be modified slightly to indicate the left or right side. Usually and or some similar subscript scheme are used to distinguish the left and right annihilators, if necessary.

If M is an R-module and AnnR(M) = 0, then M is called a faithful module.

Properties

If S is a subset of a left R-module M, then Ann(S) is a left ideal of R.[2]

If S is a submodule of M, then AnnR(S) is even a two-sided ideal: (ac)s = a(cs) = 0, since cs is another element of S.[3]

If S is a subset of M and N is the submodule of M generated by S, then in general AnnR(N) is a subset of AnnR(S), but they are not necessarily equal. If R is commutative, then the equality holds.

M may be also viewed as an R/AnnR(M)-module using the action . Incidentally, it is not always possible to make an R-module into an R/I-module this way, but if the ideal I is a subset of the annihilator of M, then this action is well-defined. Considered as an R/AnnR(M)-module, M is automatically a faithful module.

For commutative rings

Throughout this section, let be a commutative ring and a finitely generated -module.

Relation to support

The support of a module is defined as

Then, when the module is finitely generated, there is the relation

,

where is the set of prime ideals containing the subset.[4]

Short exact sequences

Given a short exact sequence of modules,

the support property

[5]

together with the relation with the annihilator implies

More specifically, the relations

If the sequence splits then the inequality on the left is always an equality. This holds for arbitrary direct sums of modules, as

Quotient modules and annihilators

Given an ideal and let be a finitely generated module, then there is the relation

on the support. Using the relation to support, this gives the relation with the annihilator[6]

Examples

Over the integers

Over any finitely generated module is completely classified as the direct sum of its free part with its torsion part from the fundamental theorem of abelian groups. Then the annihilator of a finitely generated module is non-trivial only if it is entirely torsion. This is because

since the only element killing each of the is . For example, the annihilator of is

the ideal generated by . In fact the annihilator of a torsion module

is isomorphic to the ideal generated by their least common multiple, . This shows the annihilators can be easily be classified over the integers.

Over a commutative ring R

There is a similar computation that can be done for any finitely presented module over a commutative ring . The definition of finite presentedness of implies there exists an exact sequence, called a presentation, given by

where is in . Writing explicitly as a matrix gives it as

hence has the direct sum decomposition

If each of these ideals is written as

then the ideal given by

presents the annihilator.

Over k[x,y]

Over the commutative ring for a field , the annihilator of the module

is given by the ideal

Chain conditions on annihilator ideals

The lattice of ideals of the form where S is a subset of R is a complete lattice when partially ordered by inclusion. There is interest in studying rings for which this lattice (or its right counterpart) satisfies the ascending chain condition or descending chain condition.

Denote the lattice of left annihilator ideals of R as and the lattice of right annihilator ideals of R as . It is known that satisfies the ascending chain condition if and only if satisfies the descending chain condition, and symmetrically satisfies the ascending chain condition if and only if satisfies the descending chain condition. If either lattice has either of these chain conditions, then R has no infinite pairwise orthogonal sets of idempotents. [7][8]

If R is a ring for which satisfies the A.C.C. and RR has finite uniform dimension, then R is called a left Goldie ring.[8]

Category-theoretic description for commutative rings

When R is commutative and M is an R-module, we may describe AnnR(M) as the kernel of the action map R → EndR(M) determined by the adjunct map of the identity MM along the Hom-tensor adjunction.

More generally, given a bilinear map of modules , the annihilator of a subset is the set of all elements in that annihilate :

Conversely, given , one can define an annihilator as a subset of .

The annihilator gives a Galois connection between subsets of and , and the associated closure operator is stronger than the span. In particular:

  • annihilators are submodules

An important special case is in the presence of a nondegenerate form on a vector space, particularly an inner product: then the annihilator associated to the map is called the orthogonal complement.

Relations to other properties of rings

Given a module M over a Noetherian commutative ring R, a prime ideal of R that is an annihilator of a nonzero element of M is called an associated prime of M.

(Here we allow zero to be a zero divisor.)
In particular DR is the set of (left) zero divisors of R taking S = R and R acting on itself as a left R-module.
  • When R is commutative and Noetherian, the set is precisely equal to the union of the associated primes of the R-module R.

See also

Notes

  1. ^ Pierce (1982), p. 23.
  2. ^ Proof: If a and b both annihilate S, then for each s in S, (a + b)s = as + bs = 0, and for any r in R, (ra)s = r(as) = r0 = 0.
  3. ^ Pierce (1982), p. 23, Lemma b, item (i).
  4. ^ "Lemma 10.39.5 (00L2)—The Stacks project". stacks.math.columbia.edu. Retrieved 2020-05-13.
  5. ^ "Lemma 10.39.9 (00L3)—The Stacks project". stacks.math.columbia.edu. Retrieved 2020-05-13.
  6. ^ "Lemma 10.39.9 (00L3)—The Stacks project". stacks.math.columbia.edu. Retrieved 2020-05-13.
  7. ^ Anderson & Fuller 1992, p. 322.
  8. ^ a b Lam 1999.

References

Read other articles:

Untuk kegunaan lain, lihat Bromo (disambiguasi). BromoGenre Drama Laga Fantasi PembuatMD EntertainmentDitulis olehArya DewataSutradara Anto Agam Manish Sharma Pemeran Randy Pangalila Anggika Bolsterli Armando Jordy Anjani Dina Elscant Wifesa Donny Michael Yati Surachman Dicky Wahyudi Lulu Kurnia Sulton Klein Ali Fikry Setiawan Min Penggubah lagu temaRichard GondoLagu pembukaNirwana Cinta oleh Richard GondoLagu penutupNirwana Cinta oleh Richard GondoNegara asalIndonesiaBahasa asliBahasa Indone...

 

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Desember 2023. Maria Candida (16 Januari 1884 – 12 Juni 1949) adalah seorang biarawati Katolik Italia. Ia tergabung dalam Ordo Carmelitarum Discalceatorum (OCD). Pada setiap hari, ia menghabiskan waktunya di sebuah gereja kecil di pinggiran Kota Cata...

 

 

German anarcho-communist organization The PlatformThe Platform – Anarcha-Communist OrganizationDie plattformLogo of the platformAbbreviationDPFormationJanuary 2019; 5 years ago (2019-01)TypePlatformist federationPurposeCommunist anarchismLocationGermanyRegion served Berlin, Rostock, Ruhrgebiet, Trier, Hamburg, LeipzigOfficial language GermanPublicationKollektive Einmischung[1]Websitedieplattform.org The Platform (German: Die plattform) is a German anarcho-com...

القصف الذرّي على هيروشيما وناجازاكي جزء من حرب المحيط الهادي، الحرب العالمية الثانية سحابة عيش الغراب، فوق المدينتين اليابانيتين عام 1945، هيروشيما (يسار) وناكازاكي (يمين) معلومات عامة التاريخ 6 و9 أغسطس، 1945 البلد إمبراطورية اليابان  الموقع هيروشيما وناكازاكي، اليابان34°...

 

 

Ku Klux KlanEmblem dan bendera Ku Klux KlanKeberadaanKlan ke-11865–1870-anKlan ke-21915–1944Klan ke-31sejak 1946AnggotaKlan ke-1Tidak diketahuiKlan ke-23 juta - 6 juta[1] (Puncak 1924)Klan ke-315.000 - 8.000[butuh rujukan]PropertiesAsalAmerika SerikatIdeologi politikSupremasi putihNasionalisme kulit putihVigilantismeNordikismeSegregasi rasTerorisme KristenNeo-Konfederatisme Setelah 1915:Populisme sayap kananKonservatisme sosialAntisemitismeAnti imigrasiAnti-komunismeA...

 

 

The WarlordsPoster rilis teatrikalNama lainTradisional投名狀Sederhana投名状MandarinTóu Míng ZhuàngKantonTau4 Ming4 Zong6 SutradaraPeter ChanProduserPeter ChanAndre MorganDitulis olehXu LanChun Tin-namAubery LamHuang JianxinJojo HuiHe JipingGuo JunliJames YuenPemeranJet LiAndy LauTakeshi KaneshiroXu JingleiPenata musikChan Kwong-wingPeter KamChatchai PongprapaphanLeon KoSinematograferArthur WongPenyuntingWenders LiPerusahaanproduksiMedia Asia FilmsChina Film GroupMorgan &a...

Pour l’article homonyme, voir Chen Jiao. Chen JiaoFonctionReine consortBiographieDécès 110 av. J.-C.Chang'anPère Chen Wu (d)Mère Liu Piao (d)Fratrie Chen Jiao (d)Conjoint Han WudiAutres informationsCondamnée pour Sorcelleriemodifier - modifier le code - modifier Wikidata L'impératrice Chen de Wu (chinois traditionnel : 孝武陳皇后), impératrice de la dynastie Han est la première épouse de l'empereur Han Wudi (Liu Che). Elle est également connue sous le nom de Chen Jiao o...

 

 

Primera División 2007-2008 Competizione Primera División Sport Calcio Edizione 77ª Organizzatore RFEF Date dal 25 agosto 2007al 18 maggio 2008 Luogo  Spagna Partecipanti 20 Formula Girone all'italiana Risultati Vincitore Real Madrid(31º titolo) Retrocessioni Real SaragozzaReal MurciaLevante Statistiche Miglior marcatore Daniel Güiza (27) Incontri disputati 380 Gol segnati 1 021 (2,69 per incontro) Cronologia della competizione 2006-2007 2008-2009 Manuale La P...

 

 

Annual film festival held in Venice, Italy Mostra Internazionale d'Arte CinematograficaInternational Exhibition of Cinematographic ArtVenice Cinema Palace on the Lido islandLocationVenice, ItalyFounded6 August 1932; 91 years ago (1932-08-06)AwardsGolden LionSilver LionVolpi Cup and othersArtistic directorAlberto Barbera (since 2011)No. of films92 in 2021Websitelabiennale.org/en/cinemaCurrent: 80th81st 79th The Venice Film Festival or Venice International Film Festival (Itali...

King of Austrasia Chlothar IVFirst page of the Alamannic law code issued in Chlothar's name. The fourth lines reads:DOM HLOTHARII ORTODOXI REGIS(the orthodox king, Lord Chlothar)King of AustrasiaReign717–718PredecessorChilperic IISuccessorChilperic IIMayor of the PalaceCharles MartelDied718DynastyMerovingianFatherTheuderic III (?) Chlothar IV[a] (died 718) was the king of Austrasia from 717 until his death. He was a member of the Merovingian dynasty, and was installed by Charles Mar...

 

 

ХристианствоБиблия Ветхий Завет Новый Завет Евангелие Десять заповедей Нагорная проповедь Апокрифы Бог, Троица Бог Отец Иисус Христос Святой Дух История христианства Апостолы Хронология христианства Раннее христианство Гностическое христианство Вселенские соборы Н...

 

 

土库曼斯坦总统土库曼斯坦国徽土库曼斯坦总统旗現任谢尔达尔·别尔德穆哈梅多夫自2022年3月19日官邸阿什哈巴德总统府(Oguzkhan Presidential Palace)機關所在地阿什哈巴德任命者直接选举任期7年,可连选连任首任萨帕尔穆拉特·尼亚佐夫设立1991年10月27日 土库曼斯坦土库曼斯坦政府与政治 国家政府 土库曼斯坦宪法 国旗 国徽 国歌 立法機關(英语:National Council of Turkmenistan) ...

American jazz musician Benny Morton (January 31, 1907 – December 28, 1985)[1] was an American jazz trombonist, most associated with the swing genre. Career He was born in New York, United States.[2] One of his first jobs was working with Clarence Holiday, and he appeared with Clarence's daughter Billie Holiday towards the end of her life on The Sound of Jazz.[2] Morton was a member of pianist Teddy Wilson's Sextet throughout the early 1940s. In the 1960s he was part ...

 

 

2003 single by Mika NakashimaFind the WaySingle by Mika Nakashimafrom the album Love LanguageJapaneseB-sideSeppun (at-tica Remix)ReleasedAugust 6, 2003 (2003-08-06)Recorded2003Studio5:28GenreJ-popLabelSony RecordsComposer(s)Lori FineLyricist(s)Mika NakashimaMika Nakashima singles chronology Seppun (2003) Find the Way (2003) Yuki no Hana (2004) Music videoFind the Way on YouTube Find the Way is the ninth single by Mika Nakashima. Written by Nakashima and Lori Fine, the single wa...

 

 

Elizabethan play likely worked on by Shakespeare Sir Thomas MorePhoto of a page written by 'Hand D'(thought to be William Shakespeare)Written byOriginally written by Anthony Munday and Henry Chettle; later heavily revised by Thomas Heywood, Thomas Dekker and William ShakespeareCharactersThomas More Earl of ShrewsburyRoger CholmeleyThomas PalmerJohn MundyWilliam RoperDate premieredc. 1591–93Place premieredThe Rose, LondonOriginal languageEarly Modern EnglishSubjectxenophobia, law and order, ...

قصر الذهب تقديم البلد الدولة العباسية  مدينة بغداد  الارتفاع 48.36 متر  الموقع الجغرافي تعديل مصدري - تعديل   قصر الذهب (يسمى ايضاً قصر المنصور، قصر القبة الخضراء، قصر باب الذهب) هو قصر شيده الخليفة العباسي أبو جعفر المنصور، في وسط مدينته المدورة التي اسماها مدينة ا�...

 

 

غوستاف فون راوخ (بالألمانية: Gustav von Rauch)‏    معلومات شخصية اسم الولادة (بالألمانية: Johann Justus Georg Gustav von Rauch)‏  الميلاد 1 أبريل 1774 [1]  براونشفايغ  الوفاة 2 أبريل 1841 (67 سنة)   برلين  مكان الدفن مقبرة انفالد  مواطنة مملكة بروسيا  الأولاد روزالي فون راوخغوستا�...

 

 

Term for goddess in Hinduism See also: Shakti and Mahadevi For other uses, see Devi (disambiguation). A sculpture of the goddess Lakshmi Devī (/ˈdeɪvi/;[1] Sanskrit: देवी) is the Sanskrit word for 'goddess'; the masculine form is deva. Devi and deva mean 'heavenly, divine, anything of excellence', and are also gender-specific terms for a deity in Hinduism. The concept and reverence for goddesses appears in the Vedas, which were composed around the 2nd millennium BCE. Howeve...

British Army general This article is about the British Army general. For other uses, see John Hawkesworth (disambiguation). Sir John HawkesworthRear Admiral Richard L. Conolly of the U.S. Navy, pictured here on the right, alongside Major-General John Hawkesworth aboard USS Biscayne, 6 September 1943.Nickname(s)GingerBorn(1893-02-19)19 February 1893St Bees, Cumberland, EnglandDied3 June 1945(1945-06-03) (aged 52)GibraltarBuriedNorth Front Cemetery, GibraltarAllegianceUnited KingdomSe...

 

 

  هذه المقالة عن سُوق أَهْرَاسْ (المدينة والبلدية). لمعانٍ أخرى، طالع ولاية سوق أهراس.   سوق أهراس باللهجة الشاوية (سوڨهراس) باللغة الأمازيغية () منظر عام للمدينة سوق أهراسشعار المدينة (الحقبة الاستعمارية)  خريطة الموقع اللقب محروسة الأسُودِ، ياقوتة الشرق، أرض الت�...