In mathematics, the annihilator of a subsetS of a module over a ring is the ideal formed by the elements of the ring that give always zero when multiplied by each element of S.
The above definition applies also in the case of noncommutative rings, where the left annihilator of a left module is a left ideal, and the right-annihilator, of a right module is a right ideal.
Definitions
Let R be a ring, and let M be a left R-module. Choose a non-empty subset S of M. The annihilator of S, denoted AnnR(S), is the set of all elements r in R such that, for all s in S, rs = 0.[1] In set notation,
for all
It is the set of all elements of R that "annihilate" S (the elements for which S is a torsion set). Subsets of right modules may be used as well, after the modification of "sr = 0" in the definition.
The annihilator of a single element x is usually written AnnR(x) instead of AnnR({x}). If the ring R can be understood from the context, the subscript R can be omitted.
Since R is a module over itself, S may be taken to be a subset of R itself, and since R is both a right and a left R-module, the notation must be modified slightly to indicate the left or right side. Usually and or some similar subscript scheme are used to distinguish the left and right annihilators, if necessary.
If M is an R-module and AnnR(M) = 0, then M is called a faithful module.
Properties
If S is a subset of a left R-module M, then Ann(S) is a left ideal of R.[2]
If S is a submodule of M, then AnnR(S) is even a two-sided ideal: (ac)s = a(cs) = 0, since cs is another element of S.[3]
If S is a subset of M and N is the submodule of M generated by S, then in general AnnR(N) is a subset of AnnR(S), but they are not necessarily equal. If R is commutative, then the equality holds.
M may be also viewed as an R/AnnR(M)-module using the action . Incidentally, it is not always possible to make an R-module into an R/I-module this way, but if the ideal I is a subset of the annihilator of M, then this action is well-defined. Considered as an R/AnnR(M)-module, M is automatically a faithful module.
For commutative rings
Throughout this section, let be a commutative ring and a finitely generated-module.
together with the relation with the annihilator implies
More specifically, the relations
If the sequence splits then the inequality on the left is always an equality. This holds for arbitrary direct sums of modules, as
Quotient modules and annihilators
Given an ideal and let be a finitely generated module, then there is the relation
on the support. Using the relation to support, this gives the relation with the annihilator[6]
Examples
Over the integers
Over any finitely generated module is completely classified as the direct sum of its free part with its torsion part from the fundamental theorem of abelian groups. Then the annihilator of a finitely generated module is non-trivial only if it is entirely torsion. This is because
since the only element killing each of the is . For example, the annihilator of is
the ideal generated by . In fact the annihilator of a torsion module
is isomorphic to the ideal generated by their least common multiple, . This shows the annihilators can be easily be classified over the integers.
Over a commutative ring R
There is a similar computation that can be done for any finitely presented module over a commutative ring . The definition of finite presentedness of implies there exists an exact sequence, called a presentation, given by
where is in . Writing explicitly as a matrix gives it as
hence has the direct sum decomposition
If each of these ideals is written as
then the ideal given by
presents the annihilator.
Over k[x,y]
Over the commutative ring for a field, the annihilator of the module
Denote the lattice of left annihilator ideals of R as and the lattice of right annihilator ideals of R as . It is known that satisfies the ascending chain condition if and only if satisfies the descending chain condition, and symmetrically satisfies the ascending chain condition if and only if satisfies the descending chain condition. If either lattice has either of these chain conditions, then R has no infinite pairwise orthogonal sets of idempotents. [7][8]
Category-theoretic description for commutative rings
When R is commutative and M is an R-module, we may describe AnnR(M) as the kernel of the action map R → EndR(M) determined by the adjunct map of the identityM → M along the Hom-tensor adjunction.
More generally, given a bilinear map of modules , the annihilator of a subset is the set of all elements in that annihilate :
Conversely, given , one can define an annihilator as a subset of .
The annihilator gives a Galois connection between subsets of and , and the associated closure operator is stronger than the span.
In particular:
Given a module M over a Noetherian commutative ring R, a prime ideal of R that is an annihilator of a nonzero element of M is called an associated prime of M.