Associated prime

In abstract algebra, an associated prime of a module M over a ring R is a type of prime ideal of R that arises as an annihilator of a (prime) submodule of M. The set of associated primes is usually denoted by and sometimes called the assassin or assassinator of M (word play between the notation and the fact that an associated prime is an annihilator).[1]

In commutative algebra, associated primes are linked to the Lasker–Noether primary decomposition of ideals in commutative Noetherian rings. Specifically, if an ideal J is decomposed as a finite intersection of primary ideals, the radicals of these primary ideals are prime ideals, and this set of prime ideals coincides with [2] Also linked with the concept of "associated primes" of the ideal are the notions of isolated primes and embedded primes.

Definitions

A nonzero R-module N is called a prime module if the annihilator for any nonzero submodule N' of N. For a prime module N, is a prime ideal in R.[3]

An associated prime of an R-module M is an ideal of the form where N is a prime submodule of M. In commutative algebra the usual definition is different, but equivalent:[4] if R is commutative, an associated prime P of M is a prime ideal of the form for a nonzero element m of M or equivalently is isomorphic to a submodule of M.

In a commutative ring R, minimal elements in (with respect to the set-theoretic inclusion) are called isolated primes while the rest of the associated primes (i.e., those properly containing associated primes) are called embedded primes.

A module is called coprimary if xm = 0 for some nonzero m ∈ M implies xnM = 0 for some positive integer n. A nonzero finitely generated module M over a commutative Noetherian ring is coprimary if and only if it has exactly one associated prime. A submodule N of M is called P-primary if is coprimary with P. An ideal I is a P-primary ideal if and only if ; thus, the notion is a generalization of a primary ideal.

Properties

Most of these properties and assertions are given in (Lam 1999) starting on page 86.

  • If M' M, then If in addition M' is an essential submodule of M, their associated primes coincide.
  • It is possible, even for a commutative local ring, that the set of associated primes of a finitely generated module is empty. However, in any ring satisfying the ascending chain condition on ideals (for example, any right or left Noetherian ring) every nonzero module has at least one associated prime.
  • Any uniform module has either zero or one associated primes, making uniform modules an example of coprimary modules.
  • For a one-sided Noetherian ring, there is a surjection from the set of isomorphism classes of indecomposable injective modules onto the spectrum If R is an Artinian ring, then this map becomes a bijection.
  • Matlis' Theorem: For a commutative Noetherian ring R, the map from the isomorphism classes of indecomposable injective modules to the spectrum is a bijection. Moreover, a complete set of representatives for those classes is given by where denotes the injective hull and ranges over the prime ideals of R.
  • For a Noetherian module M over any ring, there are only finitely many associated primes of M.

For the case for commutative Noetherian rings, see also Primary decomposition#Primary decomposition from associated primes.

Examples

  • If the associated prime ideals of are the ideals and
  • If R is the ring of integers, then non-trivial free abelian groups and non-trivial abelian groups of prime power order are coprimary.
  • If R is the ring of integers and M a finite abelian group, then the associated primes of M are exactly the primes dividing the order of M.
  • The group of order 2 is a quotient of the integers Z (considered as a free module over itself), but its associated prime ideal (2) is not an associated prime of Z.

Notes

  1. ^ Picavet, Gabriel (1985). "Propriétés et applications de la notion de contenu". Communications in Algebra. 13 (10): 2231–2265. doi:10.1080/00927878508823275.
  2. ^ Lam 1999, p. 117, Ex 40B.
  3. ^ Lam 1999, p. 85.
  4. ^ Lam 1999, p. 86.

References

Read other articles:

Bendungan Capanda adalah sebuah bendungan di Angola.[1] Referensi ^ Bhebhe, E., dkk. (September 2020). Ankomah, Baffour, ed. The Africa Factbook: Busting the Myths (PDF) (dalam bahasa Inggris). Book of African Records & African Union Commission. hlm. 289. ISBN 978-1-77925-413-9.  Parameter |url-status= yang tidak diketahui akan diabaikan (bantuan)Pemeliharaan CS1: Banyak nama: authors list (link) Artikel bertopik Angola ini adalah sebuah rintisan. Anda dapat me...

 

У этого термина существуют и другие значения, см. Wolfenstein (значения).Wolfenstein: The New Order Разработчик MachineGames Издатель Bethesda Softworks Локализатор 1С-СофтКлаб Часть серии Wolfenstein Дата анонса 7 мая 2013 года Дата выпуска 20 мая 2014 года Жанры шутер от первого лица с элементами стелс-экшена Соз�...

 

Bagian depan Zeughaus, gedung utama Museum Museum Sejarah Jerman (Jerman: Deutsches Historisches Museumcode: de is deprecated ), yang dikenal dengan akronim DHM, adalah sebuah museum di Berlin, Jerman yang dicurahkan untuk sejarah Jerman. Museum tersebut mendeskripsikan dirinya sendiri sebagai tempat pencerahan dan pemahaman pembagian sejarah Jerman dan Eropa. Bacaan tambahan Christoph Stölzl: Deutsches Historisches Museum. Ideen – Kontroversen – Perspektiven. ISBN 3-549-06682-1 Deutsche...

Disambiguazione – Se stai cercando il nome degli abitanti di Mestre, vedi Mestre. Mestrinocomune LocalizzazioneStato Italia Regione Veneto Provincia Padova AmministrazioneSindacoMarco Agostini (Per Mestrino) dall'11-6-2018 (2º mandato dal 15-5-2023) TerritorioCoordinate45°27′07.76″N 11°44′41.02″E / 45.452155°N 11.744729°E45.452155; 11.744729 (Mestrino)Coordinate: 45°27′07.76″N 11°44′41.02″E / 45.452155°...

 

Jamaican dancehall singer MavadoMavado in 2008Background informationBirth nameDavid Constantine Brooks[1]Also known asGully GodBorn (1981-11-30) 30 November 1981 (age 42)[1]Kingston, Jamaica[1]GenresDancehallreggaeOccupation(s)SingerdeejayYears active2004–presentLabelsWe the BestCash MoneyMansion RecordsVPMusical artist David Constantine Brooks (born 30 November 1981),[1] better known by his stage name Mavado, is a Jamaican dancehall singer. Mavado signe...

 

منتزه وادي كوبوك الوطني IUCN التصنيف II (حديقة وطنية) تعرجات في نهر كوبوك من الجو. البلد الولايات المتحدة الأمريكية الموقع بلدة شمال غرب القطب الشمالي، ألاسكا أقرب مدينة كوتزبيو إحداثيات 67°33′N 159°17′W / 67.550°N 159.283°W / 67.550; -159.283 المساحة 1,750,716 فدان (7,084.90 كم²) تاريخ التأ�...

You can help expand this article with text translated from the corresponding article in French. (June 2017) Click [show] for important translation instructions. Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate, rather than simply copy-pasting machine-translated text into the English Wikipedia. Consider adding a topic to this template: there are alr...

 

American mystery drama soap opera television series MistressesGenre Drama Mystery Soap opera Based onMistressesby Lowri Glain and S. J. ClarksonDeveloped byK. J. SteinbergStarring Alyssa Milano Yunjin Kim Rochelle Aytes Jes Macallan Jason George Brett Tucker Erik Stocklin Rob Mayes Jennifer Esposito Tabrett Bethell ComposerDanny LuxCountry of originUnited StatesOriginal languageEnglishNo. of seasons4No. of episodes52 (list of episodes)ProductionExecutive producers Rina Mimoun Douglas Rae Gran...

 

French statesman (1862–1932) Not to be confused with Aristide Bruant. Aristide BriandBriand c. 1920sPrime Minister of FranceIn office29 July 1929 – 22 October 1929PresidentGaston DoumerguePreceded byRaymond PoincaréSucceeded byAndré TardieuIn office28 November 1925 – 17 July 1926PresidentGaston DoumerguePreceded byPaul PainlevéSucceeded byÉdouard HerriotIn office16 January 1921 – 12 January 1922PresidentAlexandre MillerandPreceded byGeorges LeyguesSuccee...

Book by Robert B. Parker First edition (publ. Putnam) The Professional is the 38th book in Robert B. Parker's Spenser series and first published in 2009. Spenser investigates a man who is blackmailing the wives of Boston's wealthiest men. [1] References ^ The Professional, by Robert B. Parker. robertbparker.net. Retrieved 2015-10-06. vteNovels by Robert B. ParkerSpenser novelsNovels The Godwulf Manuscript (1973) God Save the Child (1974) Mortal Stakes (1975) Promised Land (1976) The J...

 

Regno di Sassonia Motto: Providentiae MemorMemore della Provvidenza Regno di Sassonia - LocalizzazioneIl Regno di Sassonia all'interno dell'Impero tedesco Dati amministrativiNome ufficialeKönigreich Sachsen Lingue ufficialitedesco Lingue parlatetedesco InnoSachsenlied (Gott sei mit dir mein Sachsenland, 1842) CapitaleDresda  (515.000 ab. / 1905) Parte diImpero tedesco PoliticaForma di StatoMonarchia Forma di governoMonarchia costituzionale Nascita1805 con Federico Augusto...

 

Industrial means of refining bauxite to produce alumina The Bayer process is the principal industrial means of refining bauxite to produce alumina (aluminium oxide) and was developed by Carl Josef Bayer. Bauxite, the most important ore of aluminium, contains only 30–60% aluminium oxide (Al2O3), the rest being a mixture of silica, various iron oxides, and titanium dioxide.[1] The aluminium oxide must be further purified before it can be refined into aluminium. The Bayer process is al...

Musim Panas Sounds Good!(Summer Love Sounds Good!)(真夏のSounds Good! Manatsu No Sounds Good!)Sampul edisi reguler berbingkai putih yang ditampilkan oleh Dhike, Noella, Kinal, Akicha, Hanna, Yupi, Beby, Nabilah, Haruka, Naomi, Ayana, Rona, Vienny, Veranda, Melody, dan ShaniaSingel oleh JKT48Sisi-AMusim Panas Sounds Good! (Manatsu no Sounds Good!) / SenbatsuSisi-BBingo! / Tim J + Tim KIIIKimi to Boku no Kankei (Hubungan Kau dan Aku) / Melody dan NabilahManatsu no Sounds Good! (Summer Love S...

 

ヨハネス12世 第130代 ローマ教皇 教皇就任 955年12月16日教皇離任 964年5月14日先代 アガペトゥス2世次代 レオ8世個人情報出生 937年スポレート公国(中部イタリア)スポレート死去 964年5月14日 教皇領、ローマ原国籍 スポレート公国親 父アルベリーコ2世(スポレート公)、母アルダその他のヨハネステンプレートを表示 ヨハネス12世(Ioannes XII、937年 - 964年5月14日)は、ロ...

 

Subprefecture and commune in Hauts-de-France, France For the rump state of the Roman Empire, see Kingdom of Soissons. You can help expand this article with text translated from the corresponding article in French. (December 2008) Click [show] for important translation instructions. View a machine-translated version of the French article. Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and c...

Independent school in Higham, Kent, EnglandGad's Hill SchoolLocationHigham, Kent, ME3 7PAEnglandCoordinates51°24′40″N 0°27′28″E / 51.4112°N 0.4579°E / 51.4112; 0.4579InformationTypeIndependent schoolCo-educationalDay schoolMottoFirst to thine own self be trueEstablished1924Local authorityKentHeadmasterPaul K SavageGenderCoeducationalAge3 to 16Enrolment315HousesHaig, Wellington, BeattyWebsitewww.gadshill.org Gad's Hill School in Higham, Kent, England, i...

 

Wellington Mounted Rifles RegimentWellington Mounted Rifles Regiment at Awapuni Racecourse 8 August 1914Active8 August 1914 – 30 June 1919CountryNew ZealandAllegiance British EmpireBranchNew Zealand ArmyRoleMounted infantrySizeRegimentPart ofNew Zealand Mounted Rifles Brigade2nd Light Horse Brigade(ANZAC Mounted Division)Nickname(s)Well and TrulysWellingtonsMounteds[1]MarchD'ye ken John Peel[2]EngagementsFirst World War Gallipoli Campaign Sinai and Palestine ...

 

Cet article est une ébauche concernant une localité argentine. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Joaquín Víctor González Héraldique Administration Pays Argentine Province Salta Département département d'Anta Maire Francisco Gerardo Orellana Code postal A4448 Indicatif téléphonique 3877 Démographie Population 13 376 hab. (2001) Géographie Coordonnées 25° 07′ 09″...

Species of fish European plaice Conservation status Least Concern  (IUCN 3.1)[1] Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Chordata Class: Actinopterygii Order: Pleuronectiformes Family: Pleuronectidae Genus: Pleuronectes Species: P. platessa Binomial name Pleuronectes platessaLinnaeus, 1758 Synonyms[2] Platessa latus Cuvier, 1829 Platessa platessa (Linnaeus, 1758) Platessa vulgaris Cloquet, 1826 Pleuronectes borealis Faber, 1828 Pleuronec...

 

Town in Connecticut, United StatesEast Hampton, ConnecticutTownTown of East HamptonThe East Hampton Bank and Trust Company Building SealNickname(s): Belltown, USA Middlesex County and Connecticut Lower Connecticut River Valley Planning Region and ConnecticutShow East HamptonShow ConnecticutShow the United StatesCoordinates: 41°34′N 72°30′W / 41.567°N 72.500°W / 41.567; -72.500Country United StatesU.S. state ConnecticutCountyMiddlesexRe...