Pure subgroup

In mathematics, especially in the area of algebra studying the theory of abelian groups, a pure subgroup is a generalization of direct summand. It has found many uses in abelian group theory and related areas.

Definition

A subgroup of a (typically abelian) group is said to be pure if whenever an element of has an root in , it necessarily has an root in . Formally: , the existence of an in G such that the existence of a in S such that .[1]

Origins

Pure subgroups are also called isolated subgroups or serving subgroups and were first investigated in Prüfer's 1923 paper,[2] which described conditions for the decomposition of primary abelian groups as direct sums of cyclic groups using pure subgroups. The work of Prüfer was complemented by Kulikoff[3] where many results were proved again using pure subgroups systematically. In particular, a proof was given that pure subgroups of finite exponent are direct summands. A more complete discussion of pure subgroups, their relation to infinite abelian group theory, and a survey of their literature is given in Irving Kaplansky's little red book.[4]

Examples

  • Every direct summand of a group is a pure subgroup.
  • Every pure subgroup of a pure subgroup is pure.
  • A divisible subgroup of an abelian group is pure.
  • If the quotient group is torsion-free, the subgroup is pure.
  • The torsion subgroup of an abelian group is pure.
  • The directed union of pure subgroups is a pure subgroup.

Since in a finitely generated abelian group the torsion subgroup is a direct summand, one might ask if the torsion subgroup is always a direct summand of an abelian group. It turns out that it is not always a summand, but it is a pure subgroup. Under certain mild conditions, pure subgroups are direct summands. So, one can still recover the desired result under those conditions, as in Kulikoff's paper. Pure subgroups can be used as an intermediate property between a result on direct summands with finiteness conditions and a full result on direct summands with less restrictive finiteness conditions. Another example of this use is Prüfer's paper, where the fact that "finite torsion abelian groups are direct sums of cyclic groups" is extended to the result that "all torsion abelian groups of finite exponent are direct sums of cyclic groups" via an intermediate consideration of pure subgroups.

Generalizations

Pure subgroups were generalized in several ways in the theory of abelian groups and modules. Pure submodules were defined in a variety of ways, but eventually settled on the modern definition in terms of tensor products or systems of equations; earlier definitions were usually more direct generalizations such as the single equation used above for n'th roots. Pure injective and pure projective modules follow closely from the ideas of Prüfer's 1923 paper. While pure projective modules have not found as many applications as pure injectives, they are more closely related to the original work: A module is pure projective if it is a direct summand of a direct sum of finitely presented modules. In the case of the integers and abelian groups a pure projective module amounts to a direct sum of cyclic groups.

References

  1. ^ Fuchs, L (1970), Infinite Abelian Groups, I, Pure and Applied Mathematics, New York, Academic Press.
  2. ^ Prüfer, H. (1923). "Untersuchungen über die Zerlegbarkeit der abzählbaren primären Abelschen Gruppen". Math. Z. 17 (1): 35–61. doi:10.1007/BF01504333. S2CID 118080723. Archived from the original on 2007-09-27.
  3. ^ Kulikoff, L. (1941). "Zur Theorie der Abelschen Gruppen von beliebiger Mächtigkeit". Rec. Math. Moscou. N.S. 9: 165–181. Archived from the original on 2007-09-27.
  4. ^ Kaplansky, Irving (1954). Infinite Abelian Groups. University of Michigan. ISBN 0-472-08500-X.
  • Phillip A. Griffith (1970). Infinite Abelian group theory. Chicago Lectures in Mathematics. University of Chicago Press. pp. 9–16. ISBN 0-226-30870-7. Chapter III.

Read other articles:

Drs.Hardy RampayM.Si Penjabat Bupati Gunung MasMasa jabatan30 Januari 2014 – 16 Oktober 2014 PendahuluHambit BintihPenggantiArton S. DohongPenjabat Bupati Barito SelatanMasa jabatan28 Juni 2011 – 18 September 2011 PendahuluBaharuddin H. LisaPenggantiFarid Yusran Informasi pribadiLahir27 Desember 1957 (umur 66) Puruk Cahu, Murung RayaKebangsaanIndonesiaProfesiBirokratSunting kotak info • L • B Drs. Hardy Rampay, M.Si (lahir 27 Desember 1957) adalah seor...

 

 

Ne doit pas être confondu avec Menthonnex-en-Bornes. Pour les articles homonymes, voir Clermont. Menthonnex-sous-Clermont Administration Pays France Région Auvergne-Rhône-Alpes Département Haute-Savoie Arrondissement Saint-Julien-en-Genevois Intercommunalité CC Usses et Rhône Maire Mandat Didier Galmiche 2023-2026 Code postal 74270 Code commune 74178 Démographie Populationmunicipale 759 hab. (2021 ) Densité 75 hab./km2 Géographie Coordonnées 45° 57′ 59″...

 

 

Mühlviertler HasenjagdPrigionieri di guerra sovietici a Mauthausen. I 500 fuggitivi da Mühlviertler erano in condizioni simili. Tipostrage Datafebbraio 1945 LuogoMühlviertel sottocampo di Mauthausen-Gusen Stato Germania CittàMühlviertel Coordinate48°25′N 14°25′E / 48.416667°N 14.416667°E48.416667; 14.416667Coordinate: 48°25′N 14°25′E / 48.416667°N 14.416667°E48.416667; 14.416667 ResponsabiliSS-Totenkopfverbände, Sturmabteilung (SA), V...

Peta infrastruktur dan tata guna lahan di Komune Le Chambon-sur-Lignon.  = Kawasan perkotaan  = Lahan subur  = Padang rumput  = Lahan pertanaman campuran  = Hutan  = Vegetasi perdu  = Lahan basah  = Anak sungaiLe Chambon-sur-Lignon adalah sebuah kota di Haute-Loire département di Auvergne région di Prancis selatan. Jumlah penduduknya (1999): 2,834. Penduduk kota ini umumnya adalah orang Protestan Huguenot. Kota ini menjadi tempat perlindungan orang-or...

 

 

باليامبيلا تقسيم إداري البلد اليونان  [1] إحداثيات 38°54′39″N 20°57′06″E / 38.91075°N 20.95178°E / 38.91075; 20.95178   السكان التعداد السكاني 514 (resident population of Greece) (2021)992 (resident population of Greece) (2001)1000 (resident population of Greece) (1991)762 (resident population of Greece) (2011)  الرمز الجغرافي 256036  تعديل مصدري ...

 

 

.cc

.ccDiperkenalkan13 Oktober 1997Jenis TLDTLD kode negara InternetStatusAktifRegistrieNIC (bagian dari VeriSign)SponsorIsland Internet ServicesPemakaian yang diinginkanEntitas yang terhubung dengan Kepulauan CocosPemakaian aktualDigunakan di Kepulauan CocosPembatasanTak adaStrukturRegistrasi dilakukan di tingkat keduaDokumenRegistration agreementKebijakan sengketaUDRPSitus webVerisign .cc Registry.cc ialah TLD kode negara internet (ccTLD) untuk Kepulauan Cocos (Keeling), sebuah teritori Austral...

French anthropologist and ethnologist (1908–2009) Lévi-Strauss redirects here. For the clothing manufacturer, see Levi Strauss. For other uses, see Levi Strauss (disambiguation). Claude Lévi-StraussLévi-Strauss in 2005Born(1908-11-28)28 November 1908Brussels, BelgiumDied30 October 2009(2009-10-30) (aged 100)Paris, FranceNationalityFrenchEducationUniversity of Paris (DrE, 1948)Spouses Dina Dreyfus ​ ​(m. 1932, divorced)​ Rose Marie Ullmo ...

 

 

Football at the1990 Asian GamesTournamentmenwomenSquadsmenwomenvte Below are the squads for the men's football tournament at the 1990 Asian Games, played in Beijing, China. Group A China Coach: Gao Fengwen No. Pos. Player Date of birth (age) Club 1 1GK Fu Yubin (1963-08-09)9 August 1963 (aged 27) Liaoning 2 2DF Zhu Bo (1960-09-24)24 September 1960 (aged 29) Bayi 3 3MF Gao Sheng (1962-05-10)10 May 1962 (aged 28) Liaoning 4 2DF Guo Yijun (1963-09-23)23 September 1963 (aged 26) Guangdong 5 2DF ...

 

 

Disambiguazione – Se stai cercando altri significati, vedi Peter Pan (disambigua). Questa voce o sezione sull'argomento personaggi immaginari non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Peter PanPeter Pan in una rappresentazione di Oliver Herford, The Peter Pan Alphabet, Charles Scribner's Sons, New York, 1907. UniversoPeter Pan Lingua orig.In...

British biologist Nigel BonnerBornWilliam Nigel Bonner(1928-02-15)15 February 1928London, EnglandDied27 August 1994(1994-08-27) (aged 66)Godmanchester, Cambridgeshire, England.[1]NationalityBritishAlma materUniversity College LondonKnown forStudy of Antarctic fur seals - marine mammals - introduced reindeer - marine ecologySpouseJenniferChildren2AwardsPolar MedalScientific careerFieldsZoology, Antarctic marine mammals, Antarctic ecologyInstitutionsBritish Antarctic Surv...

 

 

Area of East London For other uses, see Wanstead (disambiguation). Human settlement in EnglandWansteadWanstead drinking fountain, built to celebrate Queen Victoria’s diamond jubileeWansteadLocation within Greater LondonPopulation11,543 (2011 Census. Ward)[1]OS grid referenceTQ405885London boroughRedbridgeCeremonial countyGreater LondonRegionLondonCountryEnglandSovereign stateUnited KingdomPost townLONDONPostcode districtE11Dialling code020Poli...

 

 

Irish tennis player (1901–1958) Albert BurkeCountry (sports) IrelandBorn1901DiedNovember 1958 (aged 57)SinglesProfessional majorsUS ProQF (1931, 1932)Wembley ProQF (1935)French Pro2nd (1930) Albert Burke (1901–1958) was a French-born professional tennis player of Irish descent who described himself as British but was classed as a representative of Ireland and, on other occasions, of France when playing in international tournaments.[1] In 1924 and 1925 he w...

International customs document ATA CarnetMain pages of an ATA CarnetTypeInternational customs documentFirst issued30 July 1963PurposeTax-free and duty-free temporary admission of nonperishable goods into multiple countriesValid in78 countries and customs territories (as of 1 August 2018)Expiration1 year after issuance (max) The ATA Carnet, often referred to as the Passport for goods, is an international customs document that permits the tax-free and duty-free temporary export and import ...

 

 

Mick SchumacherMick Schumacher di tahun 2019.Lahir22 Maret 1999 (umur 25)[1][2]Vufflens-le-Château, SwissPekerjaanPembalap mobilTinggi176 cm (5 ft 9 in)Berat67 kg (148 pon)Orang tuaMichael Schumacher (bapak)Corinna Betsch (ibu)KerabatGina-Maria Schumacher (kakak)Ralf Schumacher (paman)David Schumacher (sepupu)Karier Kejuaraan Dunia Formula SatuKebangsaan JermanTahun aktif2021–2022Tim 2023Mercedes (sebagai pembalap cadangan)Nomor mobil47Jumlah ...

 

 

Cet article est une ébauche concernant l’astronautique. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Ares IV Ares-IV, comparaison Données générales Pays d’origine États-Unis Premier vol Projet abandonné Hauteur 113 m Diamètre 10 m Étage(s) 2 Charge utile Orbite basse 122 t Transfert géostationnaire (GTO) 41,1 t Missions Vaisseau Lunaire modifier  Ares IV (ou Ares 4), est un projet ...

Railway station in Pistoia, Italy This article does not cite any sources. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Pistoia railway station – news · newspapers · books · scholar · JSTOR (April 2019) (Learn how and when to remove this message) PistoiaPistoia stationGeneral informationLocationPiazza Dante Alighieri51100 Pistoia PTPistoia, Pistoia, TuscanyItalyC...

 

 

Buku tertua Logika Aristoteles. Dicetak di Lyons pada tahun 1570, dan sekarang disimpan di Perpustakaan Huelva. Karya Aristoteles, juga dikenal sebagai Corpus Aristotelicum dalam bahasa Latin, adalah kumpulan karya Aristoteles yang masih bertahan sejak zaman kuno. Menurut pembagian dari Aristoteles sendiri, tulisan-tulisannya dapat dibagi menjadi dua kelompok: eksoteris dan esoteris.[1] Para peneliti memahami hal ini sebagai perbedaan antara karya-karya yang ditujukan untuk umum (ekso...

 

 

Pour les articles homonymes, voir Douze-Octobre. Éphémérides Octobre 1er 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31         12 septembre 12 novembre Chronologies thématiques Croisades Ferroviaires Sports Disney Anarchisme Catholicisme Abréviations / Voir aussi (° 1852) = né en 1852 († 1885) = mort en 1885 a.s. = calendrier julien n.s. = calendrier grégorien Calendrier Calendrier perpétuel Liste de calendriers Naissances du...

Cross-platform game engine This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these messages) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Leadwerks – news · newspapers · books · scholar · JSTOR (February 2017) (Learn how and wh...

 

 

У этого термина существуют и другие значения, см. Ефимовка. ДеревняЕфимовка 52°04′05″ с. ш. 38°02′40″ в. д.HGЯO Страна  Россия Субъект Федерации Липецкая область Муниципальный район Воловский Сельское поселение Спасский сельсовет История и география Высота центр...