Conjugacy class

Two Cayley graphs of dihedral groups with conjugacy classes distinguished by color.

In mathematics, especially group theory, two elements and of a group are conjugate if there is an element in the group such that This is an equivalence relation whose equivalence classes are called conjugacy classes. In other words, each conjugacy class is closed under for all elements in the group.

Members of the same conjugacy class cannot be distinguished by using only the group structure, and therefore share many properties. The study of conjugacy classes of non-abelian groups is fundamental for the study of their structure.[1][2] For an abelian group, each conjugacy class is a set containing one element (singleton set).

Functions that are constant for members of the same conjugacy class are called class functions.

Definition

Let be a group. Two elements are conjugate if there exists an element such that in which case is called a conjugate of and is called a conjugate of

In the case of the general linear group of invertible matrices, the conjugacy relation is called matrix similarity.

It can be easily shown that conjugacy is an equivalence relation and therefore partitions into equivalence classes. (This means that every element of the group belongs to precisely one conjugacy class, and the classes and are equal if and only if and are conjugate, and disjoint otherwise.) The equivalence class that contains the element is and is called the conjugacy class of The class number of is the number of distinct (nonequivalent) conjugacy classes. All elements belonging to the same conjugacy class have the same order.

Conjugacy classes may be referred to by describing them, or more briefly by abbreviations such as "6A", meaning "a certain conjugacy class with elements of order 6", and "6B" would be a different conjugacy class with elements of order 6; the conjugacy class 1A is the conjugacy class of the identity which has order 1. In some cases, conjugacy classes can be described in a uniform way; for example, in the symmetric group they can be described by cycle type.

Examples

The symmetric group consisting of the 6 permutations of three elements, has three conjugacy classes:

  1. No change . The single member has order 1.
  2. Transposing two . The 3 members all have order 2.
  3. A cyclic permutation of all three . The 2 members both have order 3.

These three classes also correspond to the classification of the isometries of an equilateral triangle.

Table showing for all pairs with (compare numbered list). Each row contains all elements of the conjugacy class of and each column contains all elements of

The symmetric group consisting of the 24 permutations of four elements, has five conjugacy classes, listed with their description, cycle type, member order, and members:

  1. No change. Cycle type = [14]. Order = 1. Members = { (1, 2, 3, 4) }. The single row containing this conjugacy class is shown as a row of black circles in the adjacent table.
  2. Interchanging two (other two remain unchanged). Cycle type = [1221]. Order = 2. Members = { (1, 2, 4, 3), (1, 4, 3, 2), (1, 3, 2, 4), (4, 2, 3, 1), (3, 2, 1, 4), (2, 1, 3, 4) }). The 6 rows containing this conjugacy class are highlighted in green in the adjacent table.
  3. A cyclic permutation of three (other one remains unchanged). Cycle type = [1131]. Order = 3. Members = { (1, 3, 4, 2), (1, 4, 2, 3), (3, 2, 4, 1), (4, 2, 1, 3), (4, 1, 3, 2), (2, 4, 3, 1), (3, 1, 2, 4), (2, 3, 1, 4) }). The 8 rows containing this conjugacy class are shown with normal print (no boldface or color highlighting) in the adjacent table.
  4. A cyclic permutation of all four. Cycle type = [41]. Order = 4. Members = { (2, 3, 4, 1), (2, 4, 1, 3), (3, 1, 4, 2), (3, 4, 2, 1), (4, 1, 2, 3), (4, 3, 1, 2) }). The 6 rows containing this conjugacy class are highlighted in orange in the adjacent table.
  5. Interchanging two, and also the other two. Cycle type = [22]. Order = 2. Members = { (2, 1, 4, 3), (4, 3, 2, 1), (3, 4, 1, 2) }). The 3 rows containing this conjugacy class are shown with boldface entries in the adjacent table.

The proper rotations of the cube, which can be characterized by permutations of the body diagonals, are also described by conjugation in

In general, the number of conjugacy classes in the symmetric group is equal to the number of integer partitions of This is because each conjugacy class corresponds to exactly one partition of into cycles, up to permutation of the elements of

In general, the Euclidean group can be studied by conjugation of isometries in Euclidean space.

Example

Let G =

a = ( 2 3 )

x = ( 1 2 3 )

x-1 = ( 3 2 1 )

Then xax-1

= ( 1 2 3 ) ( 2 3 ) ( 3 2 1 ) = ( 3 1 )

= ( 3 1 ) is Conjugate of ( 2 3 )

Properties

  • The identity element is always the only element in its class, that is
  • If is abelian then for all , i.e. for all (and the converse is also true: if all conjugacy classes are singletons then is abelian).
  • If two elements belong to the same conjugacy class (that is, if they are conjugate), then they have the same order. More generally, every statement about can be translated into a statement about because the map is an automorphism of called an inner automorphism. See the next property for an example.
  • If and are conjugate, then so are their powers and (Proof: if then ) Thus taking kth powers gives a map on conjugacy classes, and one may consider which conjugacy classes are in its preimage. For example, in the symmetric group, the square of an element of type (3)(2) (a 3-cycle and a 2-cycle) is an element of type (3), therefore one of the power-up classes of (3) is the class (3)(2) (where is a power-up class of ).
  • An element lies in the center of if and only if its conjugacy class has only one element, itself. More generally, if denotes the centralizer of i.e., the subgroup consisting of all elements such that then the index is equal to the number of elements in the conjugacy class of (by the orbit-stabilizer theorem).
  • Take and let be the distinct integers which appear as lengths of cycles in the cycle type of (including 1-cycles). Let be the number of cycles of length in for each (so that ). Then the number of conjugates of is:[1]

Conjugacy as group action

For any two elements let This defines a group action of on The orbits of this action are the conjugacy classes, and the stabilizer of a given element is the element's centralizer.[3]

Similarly, we can define a group action of on the set of all subsets of by writing or on the set of the subgroups of

Conjugacy class equation

If is a finite group, then for any group element the elements in the conjugacy class of are in one-to-one correspondence with cosets of the centralizer This can be seen by observing that any two elements and belonging to the same coset (and hence, for some in the centralizer ) give rise to the same element when conjugating : That can also be seen from the orbit-stabilizer theorem, when considering the group as acting on itself through conjugation, so that orbits are conjugacy classes and stabilizer subgroups are centralizers. The converse holds as well.

Thus the number of elements in the conjugacy class of is the index of the centralizer in ; hence the size of each conjugacy class divides the order of the group.

Furthermore, if we choose a single representative element from every conjugacy class, we infer from the disjointness of the conjugacy classes that where is the centralizer of the element Observing that each element of the center forms a conjugacy class containing just itself gives rise to the class equation:[4] where the sum is over a representative element from each conjugacy class that is not in the center.

Knowledge of the divisors of the group order can often be used to gain information about the order of the center or of the conjugacy classes.

Example

Consider a finite -group (that is, a group with order where is a prime number and ). We are going to prove that every finite -group has a non-trivial center.

Since the order of any conjugacy class of must divide the order of it follows that each conjugacy class that is not in the center also has order some power of where But then the class equation requires that From this we see that must divide so

In particular, when then is an abelian group since any non-trivial group element is of order or If some element of is of order then is isomorphic to the cyclic group of order hence abelian. On the other hand, if every non-trivial element in is of order hence by the conclusion above then or We only need to consider the case when then there is an element of which is not in the center of Note that includes and the center which does not contain but at least elements. Hence the order of is strictly larger than therefore therefore is an element of the center of a contradiction. Hence is abelian and in fact isomorphic to the direct product of two cyclic groups each of order

Conjugacy of subgroups and general subsets

More generally, given any subset ( not necessarily a subgroup), define a subset to be conjugate to if there exists some such that Let be the set of all subsets such that is conjugate to

A frequently used theorem is that, given any subset the index of (the normalizer of ) in equals the cardinality of :

This follows since, if then if and only if in other words, if and only if are in the same coset of

By using this formula generalizes the one given earlier for the number of elements in a conjugacy class.

The above is particularly useful when talking about subgroups of The subgroups can thus be divided into conjugacy classes, with two subgroups belonging to the same class if and only if they are conjugate. Conjugate subgroups are isomorphic, but isomorphic subgroups need not be conjugate. For example, an abelian group may have two different subgroups which are isomorphic, but they are never conjugate.

Geometric interpretation

Conjugacy classes in the fundamental group of a path-connected topological space can be thought of as equivalence classes of free loops under free homotopy.

Conjugacy class and irreducible representations in finite group

In any finite group, the number of nonisomorphic irreducible representations over the complex numbers is precisely the number of conjugacy classes.

See also

Notes

  1. ^ a b Dummit, David S.; Foote, Richard M. (2004). Abstract Algebra (3rd ed.). John Wiley & Sons. ISBN 0-471-43334-9.
  2. ^ Lang, Serge (2002). Algebra. Graduate Texts in Mathematics. Springer. ISBN 0-387-95385-X.
  3. ^ Grillet (2007), p. 56
  4. ^ Grillet (2007), p. 57

References

  • Grillet, Pierre Antoine (2007). Abstract algebra. Graduate texts in mathematics. Vol. 242 (2 ed.). Springer. ISBN 978-0-387-71567-4.

Read other articles:

Ben BarnesBarnes at the UK premiere of The Chronicles of Narnia: Prince CaspianLahirBenjamin Thomas BarnesPekerjaanAktorTahun aktif2006–sekarang Benjamin Thomas Ben Barnes (lahir 20 Agustus 1981) adalah seorang pemeran asal Inggris. Dia bermain dalam beberapa judul film antara lain Stardust, Bigga Than Ben, dan The Chronicles of Narnia: Prince Caspian. Filmografi Tahun Judul Peran Catatan 2007 Bigga than Ben Cobakka 2007 Stardust Dunstan muda Peran yang tidak dikreditkan 2008 Chronicl...

 

SantiagoNama lokal: SantiaguJulukan: Ilha-berço (cradle island)SantiagoTampilkan peta Cape VerdeSantiagoTampilkan peta Samudera AtlantikGeografiLokasiSamudra AtlantikKoordinat15°04′N 23°38′W / 15.067°N 23.633°W / 15.067; -23.633Koordinat: 15°04′N 23°38′W / 15.067°N 23.633°W / 15.067; -23.633Luas991 km2Panjang54.9 kmLebar28.8 kmTitik tertinggiPico de Antónia (1.392 m)PemerintahanNegara Tanjung ...

 

العلاقات النرويجية الزيمبابوية النرويج زيمبابوي   النرويج   زيمبابوي تعديل مصدري - تعديل   العلاقات النرويجية الزيمبابوية هي العلاقات الثنائية التي تجمع بين النرويج وزيمبابوي.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتي�...

القطلونية الاسم الذاتي Català الناطقون أكثر من 11.5 مليون الدول  إسبانيا  فرنسا  إيطاليا  أندورا المنطقة قطلونية، بلنسية، جزر البليار، قطلونية الشمالية، أرغونة، مرسية، سردانية، أندرة الرتبة 75 الكتابة أبجدية لاتينية النسب هندية أوروبية إيطاليقيةرومنسيةقسطانية رو�...

 

Westside Provisions marker Westside Provisions is a mixed use neighborhood located in the West Midtown area of Atlanta, Georgia, United States.[1] History White Provision expansion plans, 1922 Westside Provisions was formed in 2008 by the construction of a footbridge linking the Westside Urban Market to White Provision. White Provision occupies the White Provision Co. building, constructed in 1910 and expanded in 1922–1924 in the Industrial Gothic style. It served as a meat packing ...

 

Untuk kegunaan lain, lihat Aceh (disambiguasi). Koordinat: 5°22′N 95°30′E / 5.367°N 95.500°E / 5.367; 95.500 Kabupaten Aceh BesarKabupatenTranskripsi bahasa daerah • Jawoëاچيه راييك • Alfabet AcehAcèh RayekMasjid Rahmatullah Lampuuk LambangMotto: Putoh ngon mufakat, kuwat ngon meuseuraya(Aceh) Suatu keputusan berlandaskan mufakat dan persatuan selalu di jaga dengan sebaik-baiknyaPetaKabupaten Aceh BesarPetaTampilkan ...

Obverse and reverse of a 3d note of paper currency issued by the Province of Pennsylvania and printed by Benjamin Franklin and David Hall in 1764. A 8s Pennsylvania note issued in 1777. The pound was the currency of Pennsylvania until 1793. It was created as a response to the global economic downturn caused by the collapse of the South Sea Company.[1] Initially, sterling and certain foreign coins circulated, supplemented from 1723 by local paper money, colonial scrip. Although these n...

 

American journalist (1936–2013) Not to be confused with Saul Raphael Landau. Saul LandauBornJanuary 15, 1936New York City, U.S.DiedSeptember 9, 2013(2013-09-09) (aged 77)Alameda, California, U.S.Alma materUniversity of Wisconsin, MadisonOccupation(s)Journalist, filmmakerSpouse(s)Nina SerranoRebecca SwitzerChildren5, including Greg and Valerie Saul Landau (January 15, 1936 – September 9, 2013) was an American journalist, filmmaker and commentator. He was also a professor emeritu...

 

貝廷是巴西的城市,位於該國東南部,距離里約熱內盧461公里,由米納斯吉拉斯州負責管轄,始建於1938年12月17日,面積345平方公里,海拔高度860米,受熱帶氣候影響,2006年人口407,003。 參考資料 这是一篇與巴西相關的地理小作品。你可以通过编辑或修订扩充其内容。查论编 查论编 米納斯吉拉斯州市鎮首府及最大城市:贝洛奥里藏特 巴巴塞納巴巴塞納 阿尔弗雷多瓦斯�...

Anass Achahbar Informasi pribadiNama lengkap Anass AchahbarTanggal lahir 13 Januari 1994 (umur 30)Tempat lahir Den Haag, BelandaTinggi 1,71 m (5 ft 7 in)Posisi bermain PenyerangInformasi klubKlub saat ini FeyenoordNomor 29Karier junior2001 VCS2002–2010 FeyenoordKarier senior*Tahun Tim Tampil (Gol)2011– Feyenoord 12 (0)Tim nasional‡2010–2011 Belanda U-17 14 (5)2011– Belanda U-19 10 (8) * Penampilan dan gol di klub senior hanya dihitung dari liga domestik dan...

 

Trbovlje Power StationTrbovlje Chimney above the Sava ValleyLocation of the Trbovlje Power Station in SloveniaCountrySloveniaCoordinates46°7′33″N 15°3′41″E / 46.12583°N 15.06139°E / 46.12583; 15.06139StatusCompletedConstruction began1964Commission date1966Decommission date2016Operator(s)Termoelektrarna Trbovlje d.o.o.Thermal power station Primary fuelLigniteSecondary fuelNatural gasPower generation Units operatio...

 

Gunung Scopusהַר הַצּוֹפִיםTitik tertinggiKetinggian826 m (2.710 ft)GeografiLetakJerusalemPegununganYudea Gunung Scopus (Ibrani הַר הַצּוֹפִים (Har HaTzofim), Arab جبل المشارف Ǧabal al-Mašārif, جبل المشهد Ǧabal al-Mašhad, جبل الصوانة) (secara Harfiah Gunung Lihat) adalah pegunungan (elevasi: 826 meter di atas permukaan laut) di timur laut Yerusalem, Israel. Menghadap Yerusalem, Gunung Scopus menjadi tempat penting dan strat...

In chimica, si definisce radicale (o radicale libero[1]) un'entità molecolare molto reattiva avente vita media di norma brevissima, costituita da un atomo o una molecola formata da più atomi, che presenta un elettrone spaiato[2]: tale elettrone rende il radicale estremamente reattivo, in grado di legarsi ad altri radicali o di sottrarre un elettrone ad altre molecole vicine[3]. I radicali giocano un ruolo importante in fenomeni come la combustione, la polimerizzazion...

 

  لمعانٍ أخرى، طالع تربة (توضيح). تنتشر في ألمانيا تربة اللوس التي تغطيها الرواسب الطفالية. تُغطي أيرلندا الشمالية التربة التي تحتوي على نسبة عالية من الرطوبة نتيجة لاختزال الماء بداخلها مما أدى إلى تشبع سطحها بالماء وضحالة طبقاتها تحت السطحية، وتكونت هذه التربة بفعل ...

 

كأس اليونان 2013–14 تفاصيل الموسم كأس اليونان  النسخة 72  البلد اليونان  المنظم الاتحاد الإغريقي لكرة القدم  البطل باناثينايكوس  مباريات ملعوبة 53   عدد المشاركين 46   كأس اليونان 2012–13  كأس اليونان 2014–15  تعديل مصدري - تعديل   كأس اليونان 2013–14 (باليوناني...

Världsmästerskapet i ishockey för herrar 2017Datum5–21 maj 2017DeltagareNationer i kvalInget kvalNationer ihuvudmästerskap16VärdskapLand Frankrike  TysklandSpelplatser2Placeringar Guld Sverige Silver Kanada Brons RysslandÖvrigtMatcher64Mål355Publik686 391 (10 725 per match)Flest målKutjerov, Gusev, Nylander (7)Flest poäng Artemij Panarin (17)MVP William Nylander← 2016 Ryssland Danmark 2018 → Tre Kronor firas på Sergels torg efter VM-guldet...

 

Cet article est une ébauche concernant la Finlande. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Pour les articles homonymes, voir Laponie (homonymie). Laponie Lappi (fi)Lappland (sv)Sápmi (se) Localisation de la Laponie Administration Pays Finlande Type Région Capitale Rovaniemi Chef de la région Mika Riipi ISO 3166-2 FI-10 Démographie Gentilé Lapon, Lapone Population 178 237 hab. (2019) Dens...

 

Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus. Cet article ne s'appuie pas, ou pas assez, sur des sources secondaires ou tertiaires (août 2018). Pour améliorer la vérifiabilité de l'article ainsi que son intérêt encyclopédique, il est nécessaire, quand des sources primaires sont citées, de les associer à des analyses faites par des sources secondaires. Football australienFooty Principale instance Australian Football League Clubs 25,770 (2016)[1] Lic...

Den här artikeln behöver källhänvisningar för att kunna verifieras. (2016-06) Åtgärda genom att lägga till pålitliga källor (gärna som fotnoter). Uppgifter utan källhänvisning kan ifrågasättas och tas bort utan att det behöver diskuteras på diskussionssidan. Clemens KlotzFödd31 maj 1886[1]KölnDöd18 augusti 1969[1] (83 år)Köln[1]Medborgare iTysklandSysselsättningArkitekt[2][3]Redigera Wikidata Prora, huvudbyggnaden från landsidan. Ordensburg Vogelsang, n...

 

Disambiguazione – Se stai cercando la sillabazione alpha bravo charlie, vedi Alfabeto fonetico NATO. Questa voce o sezione sugli argomenti fonetica e alfabeti non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. La pronuncia dell'acronimo inglese dell'alfabeto fonetico internazionale (IPA) scritta usando l'alfabeto stesso. L'alfabeto fonetico internazio...