Gennadi Sardanashvily graduated from Moscow State University (MSU) in 1973, he was a Ph.D. student of the Department of Theoretical Physics (MSU) in 1973–76, where he held a position in 1976.
He attained his Ph.D. degree in physics and mathematics from MSU, in 1980, with Dmitri Ivanenko as his supervisor, and his D.Sc. degree in physics and mathematics from MSU, in 1998.
Gennadi Sardanashvily has published more than 400 scientific works, including 28 books.
Selected monographs
Sardanashvily, G.; Zakharov, O. (1992), Gauge Gravitation Theory, World Scientific, ISBN981-02-0799-9.
Sardanashvily, G. (1993), Gauge Theory on Jet Manifolds, Hadronic Press, ISBN0-911767-60-6.
Sardanashvily, G. (1995), Generalized Hamiltonian Formalism for Field Theory, World Scientific, ISBN981-02-2045-6.
Giachetta, G.; Mangiarotti, L.; Sardanashvily, G. (1997), New Lagrangian and Hamiltonian Methods in Field Theory, World Scientific, ISBN981-02-1587-8.
Mangiarotti, L.; Sardanashvily, G. (1998), Gauge Mechanics, World Scientific, ISBN981-02-3603-4.
Mangiarotti, L.; Sardanashvily, G. (2000), Connections in Classical and Quantum Field Theory, World Scientific, ISBN981-02-2013-8.
Giachetta, G.; Mangiarotti, L.; Sardanashvily, G. (2005), Geometric and Algebraic Topological Methods in Quantum Mechanics, World Scientific, ISBN981-256-129-3.
Giachetta, G.; Mangiarotti, L.; Sardanashvily, G. (2009), Advanced Classical Field Theory, World Scientific, ISBN978-981-283-895-7.
Giachetta, G.; Mangiarotti, L.; Sardanashvily, G. (2011), Geometric formulation of classical and quantum mechanics, World Scientific, ISBN978-981-4313-72-8.
Sardanashvily, G. (2012), Lectures on Differential Geometry of Modules and Rings. Application to Quantum Theory, Lambert Academic Publishing, ISBN978-3-659-23806-2.
Sardanashvily, G. (2013), Advanced Differential Geometry for Theoreticians. Fiber bundles, jet manifolds and Lagrangian theory, Lambert Academic Publishing, ISBN978-3-659-37815-7.
Sardanashvily, G. (2015), Handbook of Integrable Hamiltonian Systems, URSS, ISBN978-5-396-00687-4.
Sardanashvily, G. (2016), Noether's Theorems. Applications in Mechanics and Field Theory, Springer, ISBN978-94-6239-171-0.
^D. Ivanenko, G. Sardanashvily, The gauge treatment of gravity, Physics Reports 94 (1983) 1–45.
^G. Giachetta, L. Mangiarotti, G. Sardanashvily, Lagrangian supersymmetries depending on derivatives. Global analysis and cohomology, Commun. Math. Phys. 295 (2005) 103–128; arXiv:hep-th/0407185.
^D. Bashkirov, G. Giachetta, L. Mangiarotti, G. Sardanashvily, The KT-BRST complex of a degenerate Lagrangian theory, Lett. Math. Phys. 83 (2008) 237–252; arXiv:math-ph/0702097.
^G. Giachetta, L. Mangiarotti, G. Sardanashvily, Covariant Hamiltonian equations for field theory, J. Phys. A 32 (1999) 6629–6642; arXiv:hep-th/9904062.
^G. Giachetta, L. Mangiarotti, G. Sardanashvily, On the notion of gauge symmetries of generic Lagrangian field theory, J. Math. Phys. 50 (2009) 012903; arXiv:0807.3003.
^L.Mangiarotti, G. Sardanashvily, Quantum mechanics with respect to different reference frames, J. Math. Phys. 48 (2007) 082104; arXiv:quant-ph/0703266.
^E. Fiorani, G. Sardanashvily, Global action-angle coordinates for completely integrable systems with non-compact invariant submanifolds, J. Math. Phys. 48 (2007) 032901; arXiv:math/0610790.
^G. Sardanashvily, Graded infinite order jet manifolds, Int. J. Geom. Methods Mod. Phys. 4 (2007) 1335–1362; arXiv:0708.2434