Sometimes the quantities 2ϖ or ϖ/2 are referred to as the lemniscate constant.[3][4]
As of 2024 over 1.2 trillion digits of this constant have been calculated.[5]
History
Gauss's constant, denoted by G, is equal to ϖ /π ≈ 0.8346268[6] and named after Carl Friedrich Gauss, who calculated it via the arithmetic–geometric mean as .[7] By 1799, Gauss had two proofs of the theorem that where is the lemniscate constant.[8]
John Todd named two more lemniscate constants, the first lemniscate constantA = ϖ/2 ≈ 1.3110287771 and the second lemniscate constantB = π/(2ϖ) ≈ 0.5990701173.[9][10][11]
The lemniscate constant and Todd's first lemniscate constant were proven transcendental by Carl Ludwig Siegel in 1932 and later by Theodor Schneider in 1937 and Todd's second lemniscate constant and Gauss's constant were proven transcendental by Theodor Schneider in 1941.[9][12][13] In 1975, Gregory Chudnovsky proved that the set is algebraically independent over , which implies that and are algebraically independent as well.[14][15] But the set (where the prime denotes the derivative with respect to the second variable) is not algebraically independent over .[16] In 1996, Yuri Nesterenko proved that the set is algebraically independent over .[17]
Forms
Usually, is defined by the first equality below, but it has many equivalent forms:[18]
Analogously to the Leibniz formula for π,
we have[21][22][23][24][25]
where is the L-function of the elliptic curve over ; this means that is the multiplicative function given by
where is the number of solutions of the congruence
in variables that are non-negative integers ( is the set of all primes).
Equivalently, is given by
where such that and is the eta function.[26][27][28]
The above result can be equivalently written as
(the number is the conductor of ) and also tells us that the BSD conjecture is true for the above .[29]
The first few values of are given by the following table; if such that doesn't appear in the table, then :
The Machin formula for π is and several similar formulas for π can be developed using trigonometric angle sum identities, e.g. Euler's formula . Analogous formulas can be developed for ϖ, including the following found by Gauss: , where is the lemniscate arcsine.[35]
The lemniscate constant can be rapidly computed by the series[36][37]
Define Brouncker's continued fraction by[42]
Let except for the first equality where . Then[43][44]
For example,
In fact, the values of and , coupled with the functional equation
determine the values of for all .
Simple continued fractions
Simple continued fractions for the lemniscate constant and related constants include[45][46]
Integrals
The lemniscate constant ϖ is related to the area under the curve . Defining , twice the area in the positive quadrant under the curve is In the quartic case,
Kobayashi, Hiroyuki; Takeuchi, Shingo (2019), "Applications of generalized trigonometric functions with two parameters", Communications on Pure & Applied Analysis, 18 (3): 1509–1521, arXiv:1903.07407, doi:10.3934/cpaa.2019072, S2CID102487670
Asai, Tetsuya (2007), Elliptic Gauss Sums and Hecke L-values at s=1, arXiv:0707.3711
^G. V. Choodnovsky: Algebraic independence of constants connected with the functions of analysis, Notices of the AMS 22, 1975, p. A-486
^G. V. Chudnovsky: Contributions to The Theory of Transcendental Numbers, American Mathematical Society, 1984, p. 6
^In fact, Borwein, Jonathan M.; Borwein, Peter B. (1987). Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity (First ed.). Wiley-Interscience. ISBN0-471-83138-7. p. 45
^Nesterenko, Y. V.; Philippon, P. (2001). Introduction to Algebraic Independence Theory. Springer. p. 27. ISBN3-540-41496-7.
^Hyde (2014) proves the validity of a more general Wallis-like formula for clover curves; here the special case of the lemniscate is slightly transformed, for clarity.
^Khrushchev, Sergey (2008). Orthogonal Polynomials and Continued Fractions (First ed.). Cambridge University Press. ISBN978-0-521-85419-1. p. 140 (eq. 3.34), p. 153. There's an error on p. 153: should be .
^Khrushchev, Sergey (2008). Orthogonal Polynomials and Continued Fractions (First ed.). Cambridge University Press. ISBN978-0-521-85419-1. p. 146, 155
^Perron, Oskar (1957). Die Lehre von den Kettenbrüchen: Band II (in German) (Third ed.). B. G. Teubner. p. 36, eq. 24
^Adlaj, Semjon (2012). "An Eloquent Formula for the Perimeter of an Ellipse"(PDF). American Mathematical Society. p. 1097. One might also observe that the length of the "sine" curve over half a period, that is, the length of the graph of the function sin(t) from the point where t = 0 to the point where t = π , is . In this paper and .
Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Desember 2023. Untuk orang lain dengan nama yang sama, lihat Indra Gunawan. Indra GunawanBerkas:Indra GUNAWAN.jpgInformasi pribadiNama lahirTjia Tjoan SienKebangsaan IndonesiaLahir(1947-09-23)23 September 1947 IndonesiaMeninggal7 Juni 2009(2009-06-07) (umu...
Desmond DossDoss menerima medaliKehormatan (medal of honor) pada Oktober 1945Nama lahirDesmond Thomas DossLahir(1919-02-07)7 Februari 1919Lynchburg, Virginia, Amerika SerikatMeninggal23 Maret 2006(2006-03-23) (umur 87)Piedmont, Alabama, Amerika SerikatDinas/cabangAngkatan Darat Amerika SerikatLama dinas1942–1946PangkatKopralKesatuanB Company, Batalyon ke-1, Resimen Infanteri ke-307, Divisi Infanteri ke-77Perang/pertempuranPerang Dunia II Pertempuran Guam Pertempuran Leyte Pertempu...
Pour les articles homonymes, voir Alexandre et Chigi. Alexandre VII Portrait peint par Baciccio. 1667. Galerie Nationale d'Art Étranger. Sofia. Biographie Nom de naissance Fabio Chigi Naissance 13 février 1599Sienne, Grand-duché de Toscane Décès 22 mai 1667 (à 68 ans)Rome, États pontificaux Pape de l'Église catholique Élection au pontificat 7 avril 1655 (56 ans) Intronisation 16 avril 1655 Fin du pontificat 22 mai 1667(12 ans, 1 mois et 15 j...
Village in Maharashtra This article is an orphan, as no other articles link to it. Please introduce links to this page from related articles; try the Find link tool for suggestions. (February 2018) Village in Maharashtra, IndiaNilajvillageCountry IndiaStateMaharashtraDistrictSolapur districtLanguages • OfficialMarathiTime zoneUTC+5:30 (IST) Nilaj is a village in the Karmala taluka of Solapur district in Maharashtra state, India. Demographics Covering 222 hectares (550 acres) ...
Taux de mortalité infantile pour 1 000 naissances dans le monde en 2006[1]. 0 ‰ - 10 ‰ 10 ‰ - 30 ‰ 30 ‰ - 60 ‰ 60 ‰ - 90 ‰ 90 ‰ - 130 ‰ +130 ‰ La mortalité infantile est une statistique calculée en faisant le rapport entre le nombre d'enfants morts avant l'âge d’un an[2] sur le nombre total d’enfants nés vivants. Cette statistique est exprimée pour 1 000 naissances (‰). Elle sert essentiellement à juger de la qualité des soins obstétriq...
Former Syrian Army Chief of Staff Hikmat al-Shihabiحكمت الشهابيMember of the Regional Command of the Syrian Regional BranchIn office7 January 1980 – 1 July 199816th Chief of Staff of the Syrian ArmyIn office12 August 1974 – July 1998Preceded byYusuf ShakkurSucceeded byAli AslanHead of Military IntelligenceIn office1970–1973Preceded byAli ZazaSucceeded byAli Duba Personal detailsBorn(1931-01-08)8 January 1931Al-Bab, Aleppo Governorate, SyriaDied5 March 2013(2...
Cet article est une ébauche concernant l’histoire et l’histoire de la Savoie. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Napoléon III, représenté par Franz Xaver Winterhalter, 1855. L'entrevue de Plombières est une entrevue diplomatique entre Napoléon III et Camillo Cavour, président du conseil du royaume de Sardaigne, le 21 juillet 1858, dans la cité thermale de Plombières-les-Bains (Vosge...
La fièvre puerpérale (du latin : puer « enfant » et parere « enfanter », d'où puerpera « accouchée ») est une maladie infectieuse touchant les femmes et qui survient après un accouchement ou une fausse couche, surtout dans le cas où l'expulsion du placenta n'a pas été complète. Cette infection est causée par des bactéries qui pénètrent dans l'utérus, puis gagnent le péritoine et d'autres organes abdominaux ; elle s'accompagne d'une ...
American business executive Lynn J. GoodAlma materMiami UniversityOccupation(s)Chair, president and CEO of Duke EnergyYears activeCEO of Duke Energy on July 1, 2013Board member ofDuke Energy BoeingSpouseBrian[1]Children3 Lynn J. Good is chair, president and chief executive officer of Duke Energy, a Fortune 500 company. Good is an Ohio native and graduated from Miami University where she earned a BS in Systems Analysis and in Accounting (1981).[1] Early life and ...
1971 British horror film directed by John Hough For the concert tour by Rob Zombie and Marilyn Manson, see Twins of Evil Tour. Twins of Evil(a.k.a. Twins of Dracula)American Theatrical release posterDirected byJohn HoughScreenplay byTudor GatesBased oncharactersby Sheridan Le FanuProduced byMichael StyleHarry FineStarringPeter CushingDennis PriceMadeleine CollinsonMary CollinsonIsobel BlackKathleen ByronDamien ThomasDavid WarbeckCinematographyDick BushEdited bySpencer ReeveMusic byHarry Rober...
العلاقات النيجرية الهندية النيجر الهند النيجر الهند تعديل مصدري - تعديل العلاقات النيجرية الهندية هي العلاقات الثنائية التي تجمع بين النيجر والهند.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه المقارنة النيجر ال...
Национальное аэрокосмическое агентство Азербайджана Штаб-квартира Баку, ул. С. Ахундова, AZ 1115 Локация Азербайджан Тип организации Космическое агентство Руководители Директор: Натиг Джавадов Первый заместитель генерального директора Тофик Сулейманов Основание Осн�...
Spanish footballer In this Spanish name, the first or paternal surname is Mariño and the second or maternal family name is Villar. Diego Mariño Mariño with Valladolid in 2014Personal informationFull name Diego Mariño Villar[1]Date of birth (1990-05-09) 9 May 1990 (age 34)[2]Place of birth Vigo, SpainHeight 1.87 m (6 ft 2 in)[2]Position(s) GoalkeeperTeam informationCurrent team AlmeríaNumber 1Youth career Santa Mariña1998–2000 Rápido...
Partially recognized state in the South Caucasus This article is about the partially recognised state in the South Caucasus. For the ethnolinguistic region, see Ossetia. For the Georgian entity, see Provisional Administration of South Ossetia. State of Alania redirects here. For the former medieval kingdom, see Alania. Not to be confused with North Ossetia-Alania. Republic of South OssetiaState of Alania[1] Official names Ossetian:Республикӕ Хуссар ИрыстонПад...
Biblioteca Nacional de Australia Vista de la fachada de la Biblioteca Nacional de Australia en Camberra.UbicaciónPaís AustraliaLocalidad Parkes Place, Canberra ACT, Australia 2600Coordenadas 35°17′47″S 149°07′46″E / -35.296388888889, 149.12944444444Datos generalesTipo Biblioteca nacionalFundación 1960AcervoColecciones del acervo 7.973.819 objetos incluyendo libros, manuscritos, fotografías, partituras y planos. (2020)[1]Depósito legal SíInformació...
Main sewage system of Ancient Rome For the album by CMX, see Cloaca Maxima (album). Cloaca MaximaA map of central Rome during the time of the Roman Empire, showing the Cloaca Maxima in redCloaca MaximaShown within Augustan RomeClick on the map for a fullscreen viewCoordinates41°53′20″N 12°28′49″E / 41.88889°N 12.48028°E / 41.88889; 12.48028 The Cloaca Maxima[n 1] (Latin: Cloāca Maxima, lit. Greatest Sewer) was one of the world's earliest sewage sys...
LK IDescrizioneTipoCarro armato leggero Equipaggio3 (comandante, servente, guidatore) ProgettistaJoseph Vollmer Data impostazione1917 Data primo collaudoMarzo 1918 Utilizzatore principale Impero tedesco Esemplari1 prototipo Altre variantiLK II Dimensioni e pesoLunghezza5,08 m Larghezza1,95 m Altezza2,52 m Peso8 t Capacità combustibile140 l Propulsione e tecnicaMotoreDaimler-Benz Otto modello 1910 a 4 cilindri, alimentato a benzina Potenza55-60 hp TrazioneCingolata SospensioniR...
براد هودج معلومات شخصية الميلاد 29 ديسمبر 1974 (50 سنة) ملبورن الجنسية نيوزيلندا أستراليا الحياة العملية الفرق كلكتا نايت رايدرزمنتخب أستراليا للكريكت (2005–2008)فريق فكتوريا للكريكت (1993–2012)نادي مقاطعة لانكشر للكريكت [لغات أخرى] (2005–2011)نادي مقاطعة ليسترش�...
Automotive Corporation Rechtsform Corporation Gründung 1918 oder eher Auflösung 1922 Sitz Toledo, Ohio, USA Branche Kraftfahrzeuge Automotive Corporation war ein US-amerikanischer Hersteller von Traktoren und Automobilen.[1][2] Inhaltsverzeichnis 1 Unternehmensgeschichte 2 Fahrzeuge 3 Literatur 4 Einzelnachweise Unternehmensgeschichte Aktie der Automotive Corporation vom 28. Juli 1920 Das Unternehmen wurde etwa 1918 in Fort Wayne in Indiana gegründet. Dort stellte es Trakt...
Artikel ini membutuhkan rujukan tambahan agar kualitasnya dapat dipastikan. Mohon bantu kami mengembangkan artikel ini dengan cara menambahkan rujukan ke sumber tepercaya. Pernyataan tak bersumber bisa saja dipertentangkan dan dihapus.Cari sumber: Gelechiidae – berita · surat kabar · buku · cendekiawan · JSTOR (April 2011) Gelechiidae Dichomeris ligulella Klasifikasi ilmiah Kerajaan: Animalia Filum: Arthropoda Kelas: Insecta Ordo: Lepidoptera Superfami...