Lemniscate constant

Lemniscate of Bernoulli

In mathematics, the lemniscate constant ϖ is a transcendental mathematical constant that is the ratio of the perimeter of Bernoulli's lemniscate to its diameter, analogous to the definition of π for the circle.[1] Equivalently, the perimeter of the lemniscate is 2ϖ. The lemniscate constant is closely related to the lemniscate elliptic functions and approximately equal to 2.62205755.[2] It also appears in evaluation of the gamma and beta function at certain rational values. The symbol ϖ is a cursive variant of π; see Pi § Variant pi.

Sometimes the quantities 2ϖ or ϖ/2 are referred to as the lemniscate constant.[3][4]

As of 2024 over 1.2 trillion digits of this constant have been calculated.[5]

History

Gauss's constant, denoted by G, is equal to ϖ /π ≈ 0.8346268[6] and named after Carl Friedrich Gauss, who calculated it via the arithmetic–geometric mean as .[7] By 1799, Gauss had two proofs of the theorem that where is the lemniscate constant.[8]

John Todd named two more lemniscate constants, the first lemniscate constant A = ϖ/2 ≈ 1.3110287771 and the second lemniscate constant B = π/(2ϖ) ≈ 0.5990701173.[9][10][11]

The lemniscate constant and Todd's first lemniscate constant were proven transcendental by Carl Ludwig Siegel in 1932 and later by Theodor Schneider in 1937 and Todd's second lemniscate constant and Gauss's constant were proven transcendental by Theodor Schneider in 1941.[9][12][13] In 1975, Gregory Chudnovsky proved that the set is algebraically independent over , which implies that and are algebraically independent as well.[14][15] But the set (where the prime denotes the derivative with respect to the second variable) is not algebraically independent over .[16] In 1996, Yuri Nesterenko proved that the set is algebraically independent over .[17]

Forms

Usually, is defined by the first equality below, but it has many equivalent forms:[18]

where K is the complete elliptic integral of the first kind with modulus k, Β is the beta function, Γ is the gamma function and ζ is the Riemann zeta function.

The lemniscate constant can also be computed by the arithmetic–geometric mean ,

Gauss's constant is typically defined as the reciprocal of the arithmetic–geometric mean of 1 and the square root of 2, after his calculation of published in 1800:[19]John Todd's lemniscate constants may be given in terms of the beta function B:

As a special value of L-functions

which is analogous to

where is the Dirichlet beta function and is the Riemann zeta function.[20]

Analogously to the Leibniz formula for π, we have[21][22][23][24][25] where is the L-function of the elliptic curve over ; this means that is the multiplicative function given by where is the number of solutions of the congruence in variables that are non-negative integers ( is the set of all primes). Equivalently, is given by where such that and is the eta function.[26][27][28] The above result can be equivalently written as (the number is the conductor of ) and also tells us that the BSD conjecture is true for the above .[29] The first few values of are given by the following table; if such that doesn't appear in the table, then :

As a special value of other functions

Let be the minimal weight level new form. Then[30] The -coefficient of is the Ramanujan tau function.

Series

Viète's formula for π can be written:

An analogous formula for ϖ is:[31]

The Wallis product for π is:

An analogous formula for ϖ is:[32]

A related result for Gauss's constant () is:[33]

An infinite series discovered by Gauss is:[34]

The Machin formula for π is and several similar formulas for π can be developed using trigonometric angle sum identities, e.g. Euler's formula . Analogous formulas can be developed for ϖ, including the following found by Gauss: , where is the lemniscate arcsine.[35]

The lemniscate constant can be rapidly computed by the series[36][37]

where (these are the generalized pentagonal numbers). Also[38]

In a spirit similar to that of the Basel problem,

where are the Gaussian integers and is the Eisenstein series of weight (see Lemniscate elliptic functions § Hurwitz numbers for a more general result).[39]

A related result is

where is the sum of positive divisors function.[40]

In 1842, Malmsten found

where is Euler's constant and is the Dirichlet-Beta function.

The lemniscate constant is given by the rapidly converging series

The constant is also given by the infinite product

Also[41]

Continued fractions

A (generalized) continued fraction for π is An analogous formula for ϖ is[10]

Define Brouncker's continued fraction by[42] Let except for the first equality where . Then[43][44] For example,

In fact, the values of and , coupled with the functional equation determine the values of for all .

Simple continued fractions

Simple continued fractions for the lemniscate constant and related constants include[45][46]

Integrals

A geometric representation of and

The lemniscate constant ϖ is related to the area under the curve . Defining , twice the area in the positive quadrant under the curve is In the quartic case,

In 1842, Malmsten discovered that[47]

Furthermore,

and[48]

a form of Gaussian integral.

The lemniscate constant appears in the evaluation of the integrals

John Todd's lemniscate constants are defined by integrals:[9]

Circumference of an ellipse

The lemniscate constant satisfies the equation[49]

Euler discovered in 1738 that for the rectangular elastica (first and second lemniscate constants)[50][49]

Now considering the circumference of the ellipse with axes and , satisfying , Stirling noted that[51]

Hence the full circumference is

This is also the arc length of the sine curve on half a period:[52]

Other limits

Analogously to where are Bernoulli numbers, we have where are Hurwitz numbers.

Notes

  1. ^ See:
    • Gauss, C. F. (1866). Werke (Band III) (in Latin and German). Herausgegeben der Königlichen Gesellschaft der Wissenschaften zu Göttingen. p. 404
    • Cox 1984, p. 281
    • Eymard, Pierre; Lafon, Jean-Pierre (2004). The Number Pi. American Mathematical Society. ISBN 0-8218-3246-8. p. 199
    • Bottazzini, Umberto; Gray, Jeremy (2013). Hidden Harmony – Geometric Fantasies: The Rise of Complex Function Theory. Springer. doi:10.1007/978-1-4614-5725-1. ISBN 978-1-4614-5724-4. p. 57
    • Arakawa, Tsuneo; Ibukiyama, Tomoyoshi; Kaneko, Masanobu (2014). Bernoulli Numbers and Zeta Functions. Springer. ISBN 978-4-431-54918-5. p. 203
  2. ^ See:
  3. ^ "A064853 - Oeis".
  4. ^ "Lemniscate Constant".
  5. ^ "Records set by y-cruncher". numberworld.org. Retrieved 2024-08-20.
  6. ^ "A014549 - Oeis".
  7. ^ Finch 2003, p. 420.
  8. ^ Neither of these proofs was rigorous from the modern point of view. See Cox 1984, p. 281
  9. ^ a b c Todd, John (January 1975). "The lemniscate constants". Communications of the ACM. 18 (1): 14–19. doi:10.1145/360569.360580. S2CID 85873.
  10. ^ a b "A085565 - Oeis". and "A076390 - Oeis".
  11. ^ Carlson, B. C. (2010), "Elliptic Integrals", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248.
  12. ^ In particular, Siegel proved that if and with are algebraic, then or is transcendental. Here, and are Eisenstein series. The fact that is transcendental follows from and
    Apostol, T. M. (1990). Modular Functions and Dirichlet Series in Number Theory (Second ed.). Springer. p. 12. ISBN 0-387-97127-0.
    Siegel, C. L. (1932). "Über die Perioden elliptischer Funktionen". Journal für die reine und angewandte Mathematik (in German). 167: 62–69.
  13. ^ In particular, Schneider proved that the beta function is transcendental for all such that . The fact that is transcendental follows from and similarly for B and G from
    Schneider, Theodor (1941). "Zur Theorie der Abelschen Funktionen und Integrale". Journal für die reine und angewandte Mathematik. 183 (19): 110–128. doi:10.1515/crll.1941.183.110. S2CID 118624331.
  14. ^ G. V. Choodnovsky: Algebraic independence of constants connected with the functions of analysis, Notices of the AMS 22, 1975, p. A-486
  15. ^ G. V. Chudnovsky: Contributions to The Theory of Transcendental Numbers, American Mathematical Society, 1984, p. 6
  16. ^ In fact,
    Borwein, Jonathan M.; Borwein, Peter B. (1987). Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity (First ed.). Wiley-Interscience. ISBN 0-471-83138-7. p. 45
  17. ^ Nesterenko, Y. V.; Philippon, P. (2001). Introduction to Algebraic Independence Theory. Springer. p. 27. ISBN 3-540-41496-7.
  18. ^ See:
  19. ^ Cox 1984, p. 277.
  20. ^ "A113847 - Oeis".
  21. ^ Cremona, J. E. (1997). Algorithms for Modular Elliptic Curves (2nd ed.). Cambridge University Press. ISBN 0521598206. p. 31, formula (2.8.10)
  22. ^ In fact, the series converges for .
  23. ^ Murty, Vijaya Kumar (1995). Seminar on Fermat's Last Theorem. American Mathematical Society. p. 16. ISBN 9780821803134.
  24. ^ Cohen, Henri (1993). A Course in Computational Algebraic Number Theory. Springer-Verlag. pp. 382–406. ISBN 978-3-642-08142-2.
  25. ^ "Elliptic curve with LMFDB label 32.a3 (Cremona label 32a2)". The L-functions and modular forms database.
  26. ^ The function is the unique weight level new form and it satisfies the functional equation
  27. ^ The function is closely related to the function which is the multiplicative function defined by
    where is the number of solutions of the equation
    in variables that are non-negative integers (see Fermat's theorem on sums of two squares) and is the Dirichlet character from the Leibniz formula for π; also
    for any positive integer where the sum extends only over positive divisors; the relation between and is
    where is any non-negative integer.
  28. ^ The function also appears in
    where is any positive integer and is the set of all Gaussian integers of the form
    where is odd and is even. The function from the previous note satisfies
    where is positive odd.
  29. ^ Rubin, Karl (1987). "Tate-Shafarevich groups and L-functions of elliptic curves with complex multiplication". Inventiones Mathematicae. 89: 528.
  30. ^ "Newform orbit 1.12.a.a". The L-functions and modular forms database.
  31. ^ Levin (2006)
  32. ^ Hyde (2014) proves the validity of a more general Wallis-like formula for clover curves; here the special case of the lemniscate is slightly transformed, for clarity.
  33. ^ Hyde, Trevor (2014). "A Wallis product on clovers" (PDF). The American Mathematical Monthly. 121 (3): 237–243. doi:10.4169/amer.math.monthly.121.03.237. S2CID 34819500.
  34. ^ Bottazzini, Umberto; Gray, Jeremy (2013). Hidden Harmony – Geometric Fantasies: The Rise of Complex Function Theory. Springer. doi:10.1007/978-1-4614-5725-1. ISBN 978-1-4614-5724-4. p. 60
  35. ^ Todd (1975)
  36. ^ Cox 1984, p. 307, eq. 2.21 for the first equality. The second equality can be proved by using the pentagonal number theorem.
  37. ^ Berndt, Bruce C. (1998). Ramanujan's Notebooks Part V. Springer. ISBN 978-1-4612-7221-2. p. 326
  38. ^ This formula can be proved by hypergeometric inversion: Let
    where with . Then
    where
    where . The formula in question follows from setting .
  39. ^ Eymard, Pierre; Lafon, Jean-Pierre (2004). The Number Pi. American Mathematical Society. ISBN 0-8218-3246-8. p. 232
  40. ^ Garrett, Paul. "Level-one elliptic modular forms" (PDF). University of Minnesota. p. 11—13
  41. ^ The formula follows from the hypergeometric transformation
    where and is the modular lambda function.
  42. ^ Khrushchev, Sergey (2008). Orthogonal Polynomials and Continued Fractions (First ed.). Cambridge University Press. ISBN 978-0-521-85419-1. p. 140 (eq. 3.34), p. 153. There's an error on p. 153: should be .
  43. ^ Khrushchev, Sergey (2008). Orthogonal Polynomials and Continued Fractions (First ed.). Cambridge University Press. ISBN 978-0-521-85419-1. p. 146, 155
  44. ^ Perron, Oskar (1957). Die Lehre von den Kettenbrüchen: Band II (in German) (Third ed.). B. G. Teubner. p. 36, eq. 24
  45. ^ "A062540 - OEIS". oeis.org. Retrieved 2022-09-14.
  46. ^ "A053002 - OEIS". oeis.org.
  47. ^ Blagouchine, Iaroslav V. (2014). "Rediscovery of Malmsten's integrals, their evaluation by contour integration methods and some related results". The Ramanujan Journal. 35 (1): 21–110. doi:10.1007/s11139-013-9528-5. S2CID 120943474.
  48. ^ "A068467 - Oeis".
  49. ^ a b Cox 1984, p. 313.
  50. ^ Levien (2008)
  51. ^ Cox 1984, p. 312.
  52. ^ Adlaj, Semjon (2012). "An Eloquent Formula for the Perimeter of an Ellipse" (PDF). American Mathematical Society. p. 1097. One might also observe that the length of the "sine" curve over half a period, that is, the length of the graph of the function sin(t) from the point where t = 0 to the point where t = π , is . In this paper and .

References

Read other articles:

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Desember 2023. Untuk orang lain dengan nama yang sama, lihat Indra Gunawan. Indra GunawanBerkas:Indra GUNAWAN.jpgInformasi pribadiNama lahirTjia Tjoan SienKebangsaan IndonesiaLahir(1947-09-23)23 September 1947 IndonesiaMeninggal7 Juni 2009(2009-06-07) (umu...

 

 

Desmond DossDoss menerima medaliKehormatan (medal of honor) pada Oktober 1945Nama lahirDesmond Thomas DossLahir(1919-02-07)7 Februari 1919Lynchburg, Virginia, Amerika SerikatMeninggal23 Maret 2006(2006-03-23) (umur 87)Piedmont, Alabama, Amerika SerikatDinas/cabangAngkatan Darat Amerika SerikatLama dinas1942–1946PangkatKopralKesatuanB Company, Batalyon ke-1, Resimen Infanteri ke-307, Divisi Infanteri ke-77Perang/pertempuranPerang Dunia II Pertempuran Guam Pertempuran Leyte Pertempu...

 

 

Pour les articles homonymes, voir Alexandre et Chigi. Alexandre VII Portrait peint par Baciccio. 1667. Galerie Nationale d'Art Étranger. Sofia. Biographie Nom de naissance Fabio Chigi Naissance 13 février 1599Sienne,  Grand-duché de Toscane Décès 22 mai 1667 (à 68 ans)Rome,  États pontificaux Pape de l'Église catholique Élection au pontificat 7 avril 1655 (56 ans) Intronisation 16 avril 1655 Fin du pontificat 22 mai 1667(12 ans, 1 mois et 15 j...

Village in Maharashtra This article is an orphan, as no other articles link to it. Please introduce links to this page from related articles; try the Find link tool for suggestions. (February 2018) Village in Maharashtra, IndiaNilajvillageCountry IndiaStateMaharashtraDistrictSolapur districtLanguages • OfficialMarathiTime zoneUTC+5:30 (IST) Nilaj is a village in the Karmala taluka of Solapur district in Maharashtra state, India. Demographics Covering 222 hectares (550 acres) ...

 

 

Taux de mortalité infantile pour 1 000 naissances dans le monde en 2006[1]. 0 ‰ - 10 ‰ 10 ‰ - 30 ‰ 30 ‰ - 60 ‰ 60 ‰ - 90 ‰ 90 ‰ - 130 ‰ +130 ‰ La mortalité infantile est une statistique calculée en faisant le rapport entre le nombre d'enfants morts avant l'âge d’un an[2] sur le nombre total d’enfants nés vivants. Cette statistique est exprimée pour 1 000 naissances (‰). Elle sert essentiellement à juger de la qualité des soins obstétriq...

 

 

Former Syrian Army Chief of Staff Hikmat al-Shihabiحكمت الشهابيMember of the Regional Command of the Syrian Regional BranchIn office7 January 1980 – 1 July 199816th Chief of Staff of the Syrian ArmyIn office12 August 1974 – July 1998Preceded byYusuf ShakkurSucceeded byAli AslanHead of Military IntelligenceIn office1970–1973Preceded byAli ZazaSucceeded byAli Duba Personal detailsBorn(1931-01-08)8 January 1931Al-Bab, Aleppo Governorate, SyriaDied5 March 2013(2...

Cet article est une ébauche concernant l’histoire et l’histoire de la Savoie. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Napoléon III, représenté par Franz Xaver Winterhalter, 1855. L'entrevue de Plombières est une entrevue diplomatique entre Napoléon III et Camillo Cavour, président du conseil du royaume de Sardaigne, le 21 juillet 1858, dans la cité thermale de Plombières-les-Bains (Vosge...

 

 

La fièvre puerpérale (du latin : puer « enfant » et parere « enfanter », d'où puerpera « accouchée ») est une maladie infectieuse touchant les femmes et qui survient après un accouchement ou une fausse couche, surtout dans le cas où l'expulsion du placenta n'a pas été complète. Cette infection est causée par des bactéries qui pénètrent dans l'utérus, puis gagnent le péritoine et d'autres organes abdominaux ; elle s'accompagne d'une ...

 

 

American business executive Lynn J. GoodAlma materMiami UniversityOccupation(s)Chair, president and CEO of Duke EnergyYears activeCEO of Duke Energy on July 1, 2013Board member ofDuke Energy BoeingSpouseBrian[1]Children3 Lynn J. Good is chair, president and chief executive officer of Duke Energy, a Fortune 500 company. Good is an Ohio native and graduated from Miami University where she earned a BS in Systems Analysis and in Accounting (1981).[1] Early life and ...

1971 British horror film directed by John Hough For the concert tour by Rob Zombie and Marilyn Manson, see Twins of Evil Tour. Twins of Evil(a.k.a. Twins of Dracula)American Theatrical release posterDirected byJohn HoughScreenplay byTudor GatesBased oncharactersby Sheridan Le FanuProduced byMichael StyleHarry FineStarringPeter CushingDennis PriceMadeleine CollinsonMary CollinsonIsobel BlackKathleen ByronDamien ThomasDavid WarbeckCinematographyDick BushEdited bySpencer ReeveMusic byHarry Rober...

 

 

العلاقات النيجرية الهندية النيجر الهند   النيجر   الهند تعديل مصدري - تعديل   العلاقات النيجرية الهندية هي العلاقات الثنائية التي تجمع بين النيجر والهند.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه المقارنة النيجر ال...

 

 

Национальное аэрокосмическое агентство Азербайджана Штаб-квартира Баку, ул. С. Ахундова, AZ 1115 Локация  Азербайджан Тип организации Космическое агентство Руководители Директор: Натиг Джавадов Первый заместитель генерального директора Тофик Сулейманов Основание Осн�...

Spanish footballer In this Spanish name, the first or paternal surname is Mariño and the second or maternal family name is Villar. Diego Mariño Mariño with Valladolid in 2014Personal informationFull name Diego Mariño Villar[1]Date of birth (1990-05-09) 9 May 1990 (age 34)[2]Place of birth Vigo, SpainHeight 1.87 m (6 ft 2 in)[2]Position(s) GoalkeeperTeam informationCurrent team AlmeríaNumber 1Youth career Santa Mariña1998–2000 Rápido...

 

 

Partially recognized state in the South Caucasus This article is about the partially recognised state in the South Caucasus. For the ethnolinguistic region, see Ossetia. For the Georgian entity, see Provisional Administration of South Ossetia. State of Alania redirects here. For the former medieval kingdom, see Alania. Not to be confused with North Ossetia-Alania. Republic of South OssetiaState of Alania[1] Official names Ossetian:Республикӕ Хуссар ИрыстонПад...

 

 

Biblioteca Nacional de Australia Vista de la fachada de la Biblioteca Nacional de Australia en Camberra.UbicaciónPaís  AustraliaLocalidad Parkes Place, Canberra ACT, Australia 2600Coordenadas 35°17′47″S 149°07′46″E / -35.296388888889, 149.12944444444Datos generalesTipo Biblioteca nacionalFundación 1960AcervoColecciones del acervo 7.973.819 objetos incluyendo libros, manuscritos, fotografías, partituras y planos. (2020)[1]​Depósito legal SíInformació...

Main sewage system of Ancient Rome For the album by CMX, see Cloaca Maxima (album). Cloaca MaximaA map of central Rome during the time of the Roman Empire, showing the Cloaca Maxima in redCloaca MaximaShown within Augustan RomeClick on the map for a fullscreen viewCoordinates41°53′20″N 12°28′49″E / 41.88889°N 12.48028°E / 41.88889; 12.48028 The Cloaca Maxima[n 1] (Latin: Cloāca Maxima, lit. Greatest Sewer) was one of the world's earliest sewage sys...

 

 

LK IDescrizioneTipoCarro armato leggero Equipaggio3 (comandante, servente, guidatore) ProgettistaJoseph Vollmer Data impostazione1917 Data primo collaudoMarzo 1918 Utilizzatore principale Impero tedesco Esemplari1 prototipo Altre variantiLK II Dimensioni e pesoLunghezza5,08 m Larghezza1,95 m Altezza2,52 m Peso8 t Capacità combustibile140 l Propulsione e tecnicaMotoreDaimler-Benz Otto modello 1910 a 4 cilindri, alimentato a benzina Potenza55-60 hp TrazioneCingolata SospensioniR...

 

 

براد هودج   معلومات شخصية الميلاد 29 ديسمبر 1974 (50 سنة)  ملبورن  الجنسية نيوزيلندا أستراليا  الحياة العملية الفرق كلكتا نايت رايدرزمنتخب أستراليا للكريكت (2005–2008)فريق فكتوريا للكريكت (1993–2012)نادي مقاطعة لانكشر للكريكت  [لغات أخرى]‏ (2005–2011)نادي مقاطعة ليسترش�...

Automotive Corporation Rechtsform Corporation Gründung 1918 oder eher Auflösung 1922 Sitz Toledo, Ohio, USA Branche Kraftfahrzeuge Automotive Corporation war ein US-amerikanischer Hersteller von Traktoren und Automobilen.[1][2] Inhaltsverzeichnis 1 Unternehmensgeschichte 2 Fahrzeuge 3 Literatur 4 Einzelnachweise Unternehmensgeschichte Aktie der Automotive Corporation vom 28. Juli 1920 Das Unternehmen wurde etwa 1918 in Fort Wayne in Indiana gegründet. Dort stellte es Trakt...

 

 

Artikel ini membutuhkan rujukan tambahan agar kualitasnya dapat dipastikan. Mohon bantu kami mengembangkan artikel ini dengan cara menambahkan rujukan ke sumber tepercaya. Pernyataan tak bersumber bisa saja dipertentangkan dan dihapus.Cari sumber: Gelechiidae – berita · surat kabar · buku · cendekiawan · JSTOR (April 2011) Gelechiidae Dichomeris ligulella Klasifikasi ilmiah Kerajaan: Animalia Filum: Arthropoda Kelas: Insecta Ordo: Lepidoptera Superfami...