L-function

The Riemann zeta function can be thought of as the archetype for all L-functions.[1]

In mathematics, an L-function is a meromorphic function on the complex plane, associated to one out of several categories of mathematical objects. An L-series is a Dirichlet series, usually convergent on a half-plane, that may give rise to an L-function via analytic continuation. The Riemann zeta function is an example of an L-function, and some important conjectures involving L-functions are the Riemann hypothesis and its generalizations.

The theory of L-functions has become a very substantial, and still largely conjectural, part of contemporary analytic number theory. In it, broad generalisations of the Riemann zeta function and the L-series for a Dirichlet character are constructed, and their general properties, in most cases still out of reach of proof, are set out in a systematic way. Because of the Euler product formula there is a deep connection between L-functions and the theory of prime numbers.

The mathematical field that studies L-functions is sometimes called analytic theory of L-functions.

Construction

We distinguish at the outset between the L-series, an infinite series representation (for example the Dirichlet series for the Riemann zeta function), and the L-function, the function in the complex plane that is its analytic continuation. The general constructions start with an L-series, defined first as a Dirichlet series, and then by an expansion as an Euler product indexed by prime numbers. Estimates are required to prove that this converges in some right half-plane of the complex numbers. Then one asks whether the function so defined can be analytically continued to the rest of the complex plane (perhaps with some poles).

It is this (conjectural) meromorphic continuation to the complex plane which is called an L-function. In the classical cases, already, one knows that useful information is contained in the values and behaviour of the L-function at points where the series representation does not converge. The general term L-function here includes many known types of zeta functions. The Selberg class is an attempt to capture the core properties of L-functions in a set of axioms, thus encouraging the study of the properties of the class rather than of individual functions.

Conjectural information

One can list characteristics of known examples of L-functions that one would wish to see generalized:

Detailed work has produced a large body of plausible conjectures, for example about the exact type of functional equation that should apply. Since the Riemann zeta function connects through its values at positive even integers (and negative odd integers) to the Bernoulli numbers, one looks for an appropriate generalisation of that phenomenon. In that case results have been obtained for p-adic L-functions, which describe certain Galois modules.

The statistics of the zero distributions are of interest because of their connection to problems like the generalized Riemann hypothesis, distribution of prime numbers, etc. The connections with random matrix theory and quantum chaos are also of interest. The fractal structure of the distributions has been studied using rescaled range analysis.[2] The self-similarity of the zero distribution is quite remarkable, and is characterized by a large fractal dimension of 1.9. This rather large fractal dimension is found over zeros covering at least fifteen orders of magnitude for the Riemann zeta function, and also for the zeros of other L-functions of different orders and conductors.

Birch and Swinnerton-Dyer conjecture

One of the influential examples, both for the history of the more general L-functions and as a still-open research problem, is the conjecture developed by Bryan Birch and Peter Swinnerton-Dyer in the early part of the 1960s. It applies to an elliptic curve E, and the problem it attempts to solve is the prediction of the rank of the elliptic curve over the rational numbers (or another global field): i.e. the number of free generators of its group of rational points. Much previous work in the area began to be unified around a better knowledge of L-functions. This was something like a paradigm example of the nascent theory of L-functions.

Rise of the general theory

This development preceded the Langlands program by a few years, and can be regarded as complementary to it: Langlands' work relates largely to Artin L-functions, which, like Hecke L-functions, were defined several decades earlier, and to L-functions attached to general automorphic representations.

Gradually it became clearer in what sense the construction of Hasse–Weil zeta functions might be made to work to provide valid L-functions, in the analytic sense: there should be some input from analysis, which meant automorphic analysis. The general case now unifies at a conceptual level a number of different research programs.

See also

References

  1. ^ Steuding, Jörn (June 2005). "An Introduction to the Theory of L-functions". Preprint.
  2. ^ O. Shanker (2006). "Random matrices, generalized zeta functions and self-similarity of zero distributions". J. Phys. A: Math. Gen. 39 (45): 13983–13997. Bibcode:2006JPhA...3913983S. doi:10.1088/0305-4470/39/45/008. S2CID 54958644.
Articles about a breakthrough third degree transcendental L-function

Read other articles:

Historic site in Alberta, CanadaJasper Park Information CentreLocationJasper, Alberta, Alberta, CanadaBuilt1914ArchitectA.M. CalderonArchitectural style(s)RusticGoverning bodyParks CanadaWebsiteParks Canada page National Historic Site of CanadaDesignated1992 The Jasper Park Information Centre National Historic Site, located in Jasper National Park, Alberta, Canada, is the primary visitor contact centre for visitors to the park. Sited in the Jasper townsite, it was built as the park administr...

 

Bagian dari seriPendidikan di Indonesia Kementerian Pendidikan, Kebudayaan, Riset, dan Teknologi Republik Indonesia Pendidikan anak usia dini TK RA KB Pendidikan dasar (kelas 1–6) SD MI Paket A Pendidikan dasar (kelas 7–9) SMP MTs Paket B Pendidikan menengah (kelas 10–12) SMA MA SMK MAK SMA SMTK SMAK Utama Widya Pasraman Paket C Pendidikan tinggi Perguruan tinggi Akademi Akademi komunitas Institut Politeknik Sekolah tinggi Universitas Lain-lain Madrasah Pesantren Sekolah alam Sekolah ru...

 

Soil type AlfisolAn Alfisol profileUsed inUSDA soil taxonomyClimatevarious Alfisols are a soil order in USDA soil taxonomy. Alfisols form in semi-arid to humid areas, typically under a hardwood forest cover. They have a clay-enriched subsoil and relatively high native fertility. Alf refers to aluminium (Al) and iron (Fe). Because of their productivity and abundance, Alfisols represent one of the more important soil orders for food and fiber production. They are widely used both in agriculture...

Republik Tiongkok Nama Blue Sky, White Sun, and a Wholly Red Earth Pemakaian Bendera sipil dan negara; bendera kapal negara dan perang Perbandingan 2:3 Dipakai 1928 Rancangan Bendera nasional Republik Tiongkok dengan warna merah dan biru besar matahari putih dengan 12 cahaya berbentuk segitiga. Perancang Lu Hao-tung dan Sun Yat-sen Artikel ini memuat Teks Tionghoa. Tanpa bantuan render yang baik, anda mungkin akan melihat tanda tanya, kotak-kotak, atau simbol lainnya bukannya Karakter Ti...

 

Giuseppe BertoLahir(1914-12-27)27 Desember 1914Mogliano Veneto, ItaliaMeninggal1 November 1978(1978-11-01) (umur 63)Roma, ItaliaPekerjaanNovelis dan penulis naskahTahun aktif1947–1978 Giuseppe Berto (27 Desember 1914 – 1 November 1978) adalah seorang penulis dan penulis naskah asal Italia. Ia dikenal karena membuat novel-novel berjudul Il cielo è rosso (The Sky Is Red) dan Il male oscuro. Filmografi pilihan Eleonora Duse (1947) La tua donna (1954) The Wanderers (...

 

2009 European Parliament election in Austria ← 2004 4 June 2009 2014 → 17 seats to the European ParliamentTurnout45.97% ( 3.54 pp)   First party Second party Third party   Leader Ernst Strasser Hannes Swoboda Hans-Peter Martin Party ÖVP SPÖ Hans-Peter Martin's List Alliance EPP PES Last election 32.70%, 6 seats 33.33%, 7 seats 13.98%, 2 seats Seats won 6 4 (5 post-Lisbon) 3 Seat change 0 3 ( 2) 1 Popular vote 858,921 680,041 506,092 Perce...

Luis de Narváez (Granada, 1500 – 1555/1560) è stato un compositore spagnolo, principalmente di musica polifonica vocale e soltanto di poche musiche per vihuela, per le quali è più conosciuto al giorno d'oggi. La vihuela era uno strumento a corde pizzicate, fiorito principalmente in Spagna dal XV al XVII secolo, simile alla moderna chitarra, accordato come un liuto e molto diffuso in Spagna, dove prese il posto dello stesso liuto. Indice 1 Biografia 2 Bibliografia 3 Altri progetti 4 Coll...

 

Queen consort of Siam DebsirindraQueen consort of SiamTenure1 April 1851 – 9 September 1862BornMom Chao Ramphoei Siriwong(1834-07-17)17 July 1834Bangkok, SiamDied9 September 1862(1862-09-09) (aged 28)Bangkok, SiamSpouseMongkut (Rama IV)IssueChulalongkorn (Rama V)ChandrmondolChaturonrasmiBhanurangsi SavangwongsePosthumous nameSomdet Phra Debsirindra Phra Boromma RajiniHouseChakri dynastyFatherSiriwongMotherNoi Siriwongse Na Ayudhaya Debsirindra (Thai: เทพศิรินทรา,...

 

Parliamentary democratic republic This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Politics of Lebanon – news · newspapers · books · scholar · JSTOR (May 2022) (Learn how and when to remove this message) Lebanese Republic الجمهورية اللبنانية (Arabic)Al-Jumhūrīyah al-LubnānīyahFlag o...

Book of Isaiah, chapter 59 Isaiah 59← chapter 58chapter 60 →Isaiah 57:17–59:9 in a part of Isaiah Scroll 1QIsab (made before 100 BCE) among the Dead Sea Scrolls at Qumran.BookBook of IsaiahHebrew Bible partNevi'imOrder in the Hebrew part5CategoryLatter ProphetsChristian Bible partOld TestamentOrder in the Christian part23 Isaiah 59 is the fifty-ninth chapter of the Book of Isaiah in the Hebrew Bible or the Old Testament of the Christian Bible. This book contains the prophecies...

 

25th Young Artist AwardsOfficial programAwarded forAchievement in 2003 in film and televisionDateMay 8, 2004SiteSportsmen's LodgeStudio City, Los Angeles, CaliforniaHosted byMiranda CosgroveOfficial websiteYoungArtistAwards.org ← 24th Young Artist Awards 26th → The 25th Young Artist Awards ceremony, presented by the Young Artist Association, honored excellence of young performers under the age of 21 in the fields of film and television for the year 2003, and took place o...

 

American judge (born 1956) Daniel D. CrabtreeCrabtree in 2013Judge of the United States District Court for the District of KansasIncumbentAssumed office May 1, 2014Appointed byBarack ObamaPreceded byJohn Watson Lungstrum Personal detailsBornDaniel Dale Crabtree (1956-08-10) August 10, 1956 (age 67)Kansas City, Missouri, U.S.EducationOttawa University (BA)University of Kansas (JD) Daniel Dale Crabtree (born August 10, 1956) is a United States district judge of the United States Distri...

American TV series or program Mrs. HarrisOriginal posterBased onVery Much a Ladyby Shana AlexanderScreenplay byPhyllis NagyDirected byPhyllis NagyStarring Annette Bening Ben Kingsley Music byAlex WurmanCountry of originUnited StatesUnited KingdomOriginal languageEnglishProductionExecutive producers Elizabeth Karlsen Pam Koffler Christine Vachon John Wells ProducerChrisann VergesCinematographySteven PosterEditors Curtiss Clayton Lee Percy Running time95 minutesProduction companies HBO Films J...

 

American actress (1926–2000) Jean PetersPeters in the 1950sBornElizabeth Jean Peters(1926-10-15)October 15, 1926East Canton, Ohio, U.S.DiedOctober 13, 2000(2000-10-13) (aged 73)Carlsbad, California, U.S.Resting placeHoly Cross Cemetery, Culver CityAlma materUniversity of Michigan Ohio State University UCLAOccupationActressYears active1947–1988Spouses Stuart W. Cramer III ​ ​(m. 1954; div. 1955)​ Howard Hughes ​ ̴...

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Oktober 2022. Guided Missile Launching System (GMLS) adalah perangkat untuk meluncurkan peluru kendali, dan dipasang pada banyak kapal perang Angkatan Laut AS. Daftar ini mencakup semua peluncur yang merupakan bagian dari seri penunjukan. Termasuk dalam daftar ini a...

American radio network, founded 1991 This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: American Urban Radio Networks – news · newspapers · books · scholar · ...

 

تلفزيون لبنانTele Liban   شعار قناة تلفزيون لبنان معلومات عامة النوع منوّعاتية تاريخ التأسيس 28 مايو 1959 البلد  لبنان المقر الرسمي بيروت بـ لبنان الموقع الرسمي تلفزيون لبنان صفحة فيسبوك teleliban  صفحة تويتر telelibantv  نايل سات التردد: 11296الاستقطاب: أفقيمعدل الرمز: 27500التصحيح: ...

 

This page is an archive of past discussions. Do not edit the contents of this page. If you wish to start a new discussion or revive an old one, please do so on the current talk page. Brain function Hi neuroscientists, I'm working on a Czech Wikipedia article on Brain (cs:mozek) and I got stuck with the Brain function chapter. I looked at the English article but the corresponding chapter seems to be a rather low-quality one as it rather mentions neurotransmitter system. It needs an all-vertebr...

مثال لتغير شكل توزيع غاما حسب تغير المعلمة k {\displaystyle k} معالم شكل التوزيع (بالإنجليزية: Shape parameter)‏، في نظرية الاحتمالات والإحصاء هي معالم إحصائية تؤثر على الشكل العام لمنحنى دالة التوزيع الاحتمالي.[1] معالم شكل التوزيع هي كل معلمة إحصائية تؤثر في دالة التوزيع خارج معالم �...

 

Questa voce o sezione sull'argomento sovrani italiani non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Pietro II OrseoloBusto di Pietro Orseolo II, opera di Pietro Bearzi (1860-1862)Doge di Venezia In carica991 –1009 PredecessoreTribuno Memmo SuccessoreOttone Orseolo Nome completoPietro II Orseolo NascitaVenezia, 961 MorteVenezia, 1009 Sepolt...