Modularity theorem

Modularity theorem
FieldNumber theory
Conjectured byYutaka Taniyama
Goro Shimura
Conjectured in1957
First proof byChristophe Breuil
Brian Conrad
Fred Diamond
Richard Taylor
First proof in2001
ConsequencesFermat's Last Theorem

The modularity theorem (formerly called the Taniyama–Shimura conjecture, Taniyama–Shimura–Weil conjecture or modularity conjecture for elliptic curves) states that elliptic curves over the field of rational numbers are related to modular forms in a particular way. Andrew Wiles and Richard Taylor proved the modularity theorem for semistable elliptic curves, which was enough to imply Fermat's Last Theorem. Later, a series of papers by Wiles's former students Brian Conrad, Fred Diamond and Richard Taylor, culminating in a joint paper with Christophe Breuil, extended Wiles's techniques to prove the full modularity theorem in 2001.

Statement

The theorem states that any elliptic curve over can be obtained via a rational map with integer coefficients from the classical modular curve X0(N) for some integer N; this is a curve with integer coefficients with an explicit definition. This mapping is called a modular parametrization of level N. If N is the smallest integer for which such a parametrization can be found (which by the modularity theorem itself is now known to be a number called the conductor), then the parametrization may be defined in terms of a mapping generated by a particular kind of modular form of weight two and level N, a normalized newform with integer q-expansion, followed if need be by an isogeny.

The modularity theorem implies a closely related analytic statement:

To each elliptic curve E over we may attach a corresponding L-series. The L-series is a Dirichlet series, commonly written

The generating function of the coefficients an is then

If we make the substitution

we see that we have written the Fourier expansion of a function f(E,τ) of the complex variable τ, so the coefficients of the q-series are also thought of as the Fourier coefficients of f. The function obtained in this way is, remarkably, a cusp form of weight two and level N and is also an eigenform (an eigenvector of all Hecke operators); this is the Hasse–Weil conjecture, which follows from the modularity theorem.

Some modular forms of weight two, in turn, correspond to holomorphic differentials for an elliptic curve. The Jacobian of the modular curve can (up to isogeny) be written as a product of irreducible Abelian varieties, corresponding to Hecke eigenforms of weight 2. The 1-dimensional factors are elliptic curves (there can also be higher-dimensional factors, so not all Hecke eigenforms correspond to rational elliptic curves). The curve obtained by finding the corresponding cusp form, and then constructing a curve from it, is isogenous to the original curve (but not, in general, isomorphic to it).

History

Yutaka Taniyama[1] stated a preliminary (slightly incorrect) version of the conjecture at the 1955 international symposium on algebraic number theory in Tokyo and Nikkō. Goro Shimura and Taniyama worked on improving its rigor until 1957. André Weil[2] rediscovered the conjecture, and showed in 1967 that it would follow from the (conjectured) functional equations for some twisted L-series of the elliptic curve; this was the first serious evidence that the conjecture might be true. Weil also showed that the conductor of the elliptic curve should be the level of the corresponding modular form. The Taniyama–Shimura–Weil conjecture became a part of the Langlands program.[3][4]

The conjecture attracted considerable interest when Gerhard Frey[5] suggested in 1986 that it implies Fermat's Last Theorem. He did this by attempting to show that any counterexample to Fermat's Last Theorem would imply the existence of at least one non-modular elliptic curve. This argument was completed in 1987 when Jean-Pierre Serre[6] identified a missing link (now known as the epsilon conjecture or Ribet's theorem) in Frey's original work, followed two years later by Ken Ribet's completion of a proof of the epsilon conjecture.[7]

Even after gaining serious attention, the Taniyama–Shimura–Weil conjecture was seen by contemporary mathematicians as extraordinarily difficult to prove or perhaps even inaccessible to proof.[8] For example, Wiles's Ph.D. supervisor John Coates states that it seemed "impossible to actually prove", and Ken Ribet considered himself "one of the vast majority of people who believed [it] was completely inaccessible".

In 1995, Andrew Wiles, with some help from Richard Taylor, proved the Taniyama–Shimura–Weil conjecture for all semistable elliptic curves. Wiles used this to prove Fermat's Last Theorem,[9] and the full Taniyama–Shimura–Weil conjecture was finally proved by Diamond,[10] Conrad, Diamond & Taylor; and Breuil, Conrad, Diamond & Taylor; building on Wiles's work, they incrementally chipped away at the remaining cases until the full result was proved in 1999.[11][12] Once fully proven, the conjecture became known as the modularity theorem.

Several theorems in number theory similar to Fermat's Last Theorem follow from the modularity theorem. For example: no cube can be written as a sum of two coprime nth powers, n ≥ 3.[a]

Generalizations

The modularity theorem is a special case of more general conjectures due to Robert Langlands. The Langlands program seeks to attach an automorphic form or automorphic representation (a suitable generalization of a modular form) to more general objects of arithmetic algebraic geometry, such as to every elliptic curve over a number field. Most cases of these extended conjectures have not yet been proved.

In 2013, Freitas, Le Hung, and Siksek proved that elliptic curves defined over real quadratic fields are modular.[13]

Example

For example,[14][15][16] the elliptic curve y2y = x3x, with discriminant (and conductor) 37, is associated to the form

For prime numbers l not equal to 37, one can verify the property about the coefficients. Thus, for l = 3, there are 6 solutions of the equation modulo 3: (0, 0), (0, 1), (1, 0), (1, 1), (2, 0), (2, 1); thus a(3) = 3 − 6 = −3.

The conjecture, going back to the 1950s, was completely proven by 1999 using ideas of Andrew Wiles, who proved it in 1994 for a large family of elliptic curves.[17]

There are several formulations of the conjecture. Showing that they are equivalent was a main challenge of number theory in the second half of the 20th century. The modularity of an elliptic curve E of conductor N can be expressed also by saying that there is a non-constant rational map defined over , from the modular curve X0(N) to E. In particular, the points of E can be parametrized by modular functions.

For example, a modular parametrization of the curve y2y = x3x is given by[18]

where, as above, q = e2πiz. The functions x(z) and y(z) are modular of weight 0 and level 37; in other words they are meromorphic, defined on the upper half-plane Im(z) > 0 and satisfy

and likewise for y(z), for all integers a, b, c, d with adbc = 1 and 37 | c.

Another formulation depends on the comparison of Galois representations attached on the one hand to elliptic curves, and on the other hand to modular forms. The latter formulation has been used in the proof of the conjecture. Dealing with the level of the forms (and the connection to the conductor of the curve) is particularly delicate.

The most spectacular application of the conjecture is the proof of Fermat's Last Theorem (FLT). Suppose that for a prime p ≥ 5, the Fermat equation

has a solution with non-zero integers, hence a counter-example to FLT. Then as Yves Hellegouarch [fr] was the first to notice,[19] the elliptic curve

of discriminant

cannot be modular.[7] Thus, the proof of the Taniyama–Shimura–Weil conjecture for this family of elliptic curves (called Hellegouarch–Frey curves) implies FLT. The proof of the link between these two statements, based on an idea of Gerhard Frey (1985), is difficult and technical. It was established by Kenneth Ribet in 1987.[20]

Notes

  1. ^ The case n = 3 was already known by Euler.

References

  1. ^ Taniyama 1956.
  2. ^ Weil 1967.
  3. ^ Harris, Michael (2020). "Virtues of Priority". arXiv:2003.08242 [math.HO].
  4. ^ Lang, Serge (November 1995). "Some History of the Shimura-Taniyama Conjecture" (PDF). Notices of the American Mathematical Society. 42 (11): 1301–1307. Retrieved 2022-11-08.
  5. ^ Frey 1986.
  6. ^ Serre 1987.
  7. ^ a b Ribet 1990.
  8. ^ Singh 1997, pp. 203–205, 223, 226.
  9. ^ Wiles 1995a; Wiles 1995b.
  10. ^ Diamond 1996.
  11. ^ Conrad, Diamond & Taylor 1999.
  12. ^ Breuil et al. 2001.
  13. ^ Freitas, Le Hung & Siksek 2015.
  14. ^ For the calculations, see for example Zagier 1985, pp. 225–248
  15. ^ LMFDB: http://www.lmfdb.org/EllipticCurve/Q/37/a/1
  16. ^ OEIS: https://oeis.org/A007653
  17. ^ A synthetic presentation (in French) of the main ideas can be found in this Bourbaki article of Jean-Pierre Serre. For more details see Hellegouarch 2001
  18. ^ Zagier, D. (1985). "Modular points, modular curves, modular surfaces and modular forms". Arbeitstagung Bonn 1984. Lecture Notes in Mathematics. Vol. 1111. Springer. pp. 225–248. doi:10.1007/BFb0084592. ISBN 978-3-540-39298-9.
  19. ^ Hellegouarch, Yves (1974). "Points d'ordre 2ph sur les courbes elliptiques" (PDF). Acta Arithmetica. 26 (3): 253–263. doi:10.4064/aa-26-3-253-263. ISSN 0065-1036. MR 0379507.
  20. ^ See the survey of Ribet, K. (1990b). "From the Taniyama–Shimura conjecture to Fermat's Last Theorem". Annales de la Faculté des Sciences de Toulouse. 11: 116–139. doi:10.5802/afst.698.

Bibliography

Read other articles:

Gruppi di Azione PatriotticaBandiera delle Brigate Garibaldi (tricolore italiano con stella rossa) Descrizione generaleAbbreviazioneGAP Attivaottobre 1943 - maggio 1945 Nazione Italia ServizioPartito Comunista ItalianoComitato di Liberazione Nazionale TipoBrigate partigiane ObiettivoSconfitta dei paesi dell'Asse Battaglie/guerreSeconda guerra mondialeResistenza italiana Voci su unità militari presenti su Wikipedia I Gruppi di Azione Patriottica (GAP), formati dal comando generale delle ...

 

 

Road in Iran Road 48جاده 48Route informationPart of AH2 Length604 km (375 mi)Major junctionsFromSaveh, Markazi Freeway 5Major intersections Road 65 Freeway 6 Road 37 Road 46 Road 52 Road 35 Road 21 Road 19 Road 17ToKhosravi, KermanshahIraq Highway 5 (Iraq) LocationCountryIranProvincesMarkazi, Hamedan, KermanshahMajor citiesHamedan, HamedanBisotun, KermanshahKermanshah, Kermanshah Highway system Highways in Iran Freeways Road 48, unofficially called Karbala Highway, is in Ma...

 

 

312

This article is about the year 312. For the number, see 312 (number). For other uses, see 312 (disambiguation). This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: 312 – news · newspapers · books · scholar · JSTOR (February 2024) Calendar year Millennium: 1st millennium Centuries: 3rd centur...

American politician (1914–1996) Edmund MuskieMuskie in 197158th United States Secretary of StateIn officeMay 8, 1980 – January 18, 1981PresidentJimmy CarterDeputyWarren ChristopherPreceded byCyrus VanceSucceeded byAlexander HaigUnited States Senatorfrom MaineIn officeJanuary 3, 1959 – May 7, 1980Preceded byFrederick PayneSucceeded byGeorge MitchellChair of the Senate Budget CommitteeIn officeJanuary 3, 1975 – May 8, 1980Preceded byPosition establishedSucceed...

 

 

Gemini 1Launch of Gemini 1Jenis misiTest flightOperatorNASACOSPAR ID1964-018ASATCAT no.782Durasi misi4 hours 50 minutesJarak tempuh1.733.541 mil (2.789.864 km)Frekuensi orbit63 Properti wahanaWahana antariksaGemini SC1ProdusenMcDonnellMassa luncur7.026 pon (3.187 kg) (11.400 pon (5.170 kg) with 2nd stage) Awal misiTanggal luncurApril 8, 1964, 16:01:01.69 (April 8, 1964, 16:01:01.69) UTCRoket peluncurTitan II GLV, s/n 62-12556Tempat peluncuranCape Kennedy LC-19 Ak...

 

 

Cliff Curtis al San Diego Comic-Con International nel 2016 Clifford Vivian Devon Curtis, detto Cliff (Rotorua, 27 luglio 1968), è un attore neozelandese. Indice 1 Biografia 2 Filmografia 2.1 Cinema 2.2 Televisione 3 Doppiatori italiani 4 Note 5 Altri progetti 6 Collegamenti esterni Biografia Nato e cresciuto a Rotorua, una città della Baia dell'Abbondanza (una regione neozelandese sita sull'Isola del Nord), in una famiglia numerosa d'etnia maori,[1][2] è figlio di un baller...

Lake in Kazakhstan KoksengirsorКөксеңгірсорSentinel-2 picture of the lakeKoksengirsorLocationIshim PlainCoordinates53°02′02″N 71°45′14″E / 53.03389°N 71.75389°E / 53.03389; 71.75389Typeendorheic lakePrimary inflowsSaga and KarasuPrimary outflowsnoneBasin countriesKazakhstanMax. length12.4 kilometers (7.7 mi)Max. width7.2 kilometers (4.5 mi)Surface area46.3 square kilometers (17.9 sq mi)Average depth0.7 meters (2 ft ...

 

 

2016年美國總統選舉 ← 2012 2016年11月8日 2020 → 538個選舉人團席位獲勝需270票民意調查投票率55.7%[1][2] ▲ 0.8 %   获提名人 唐納·川普 希拉莉·克林頓 政党 共和黨 民主党 家鄉州 紐約州 紐約州 竞选搭档 迈克·彭斯 蒂姆·凱恩 选举人票 304[3][4][註 1] 227[5] 胜出州/省 30 + 緬-2 20 + DC 民選得票 62,984,828[6] 65,853,514[6]...

 

 

Untuk kelas yang membahas tarif subsidi ekonomi, lihat artikel Kereta api ekonomi. Untuk ilmu yang membahas masalah ekonomi, lihat artikel ilmu ekonomi. Ekonomi   Ekonomi menurut kawasan  Afrika · Amerika Amerika Selatan · Asia Eropa · Oseania Kategori umum Ekonomi mikro · Ekonomi makro Sejarah pemikiran ekonomi Metodologi  · Pendekatan heterodoks Bidang dan subbidang Perilaku  · Budaya  · Evolusi Pertum...

Function and history of the Selangor State Ruler For the royal family, see Selangor royal family. Sultan of Selangorسلطان سلاڠورStateArms of His Royal Highness the Sultan of SelangorIncumbentSultan Sharafuddin Idris Shah Al-Haj Ibni Almarhum Sultan Salahuddin Abdul Aziz Shah Al-Hajsince 22 November 2001coronation 8 March 2003 DetailsStyleHis Royal HighnessHeir apparentTengku Amir Shah Ibni Sultan Sharafuddin Idris Shah Al-Haj Crown Prince of SelangorFirst monarchSultan Sa...

 

 

Open standard file format and data interchange Json redirects here. For people with similar names, see J Son. JavaScript Object NotationFilename extension .jsonInternet media type application/jsonType codeTEXTUniform Type Identifier (UTI)public.jsonType of formatData interchangeExtended fromJavaScriptStandardSTD 90 (RFC 8259), ECMA-404, ISO/IEC 21778:2017Open format?YesWebsitejson.org JSON (JavaScript Object Notation, pronounced /ˈdʒeɪsən/ or /ˈdʒeɪˌsɒn/) is an op...

 

 

كأس ماليزيا 2013 تفاصيل الموسم كأس الاتحاد الماليزي  البلد ماليزيا  البطل نادي كلنتن  عدد المشاركين 30   كأس ماليزيا 2012  كأس ماليزيا 2014  تعديل مصدري - تعديل   كأس ماليزيا 2013 هو موسم من كأس الاتحاد الماليزي. كان عدد الأندية المشاركة فيه 30، وفاز فيه نادي كلنتن.[...

Artikel ini sedang dalam perubahan besar untuk sementara waktu.Untuk menghindari konflik penyuntingan, dimohon jangan melakukan penyuntingan selama pesan ini ditampilkan.Halaman ini terakhir disunting oleh InternetArchiveBot (Kontrib • Log) 189 hari 92 menit lalu. Pesan ini dapat dihapus jika halaman ini sudah tidak disunting dalam beberapa jam. Jika Anda adalah penyunting yang menambahkan templat ini, harap diingat untuk menghapusnya setelah selesai atau menggantikannya dengan {{...

 

 

Genus of legumes Copaifera Copaifera officinalis Scientific classification Kingdom: Plantae Clade: Tracheophytes Clade: Angiosperms Clade: Eudicots Clade: Rosids Order: Fabales Family: Fabaceae Subfamily: Detarioideae Tribe: Detarieae Genus: CopaiferaL. (1762) Species[1] 40 see text Synonyms Copaiba Mill. (1754) Copaiva Jacq. (1760) Cotylelobiopsis F.Heim. (1892) Pseudosindora Symington (1944) Copaifera is a genus of tropical plants in the legume family Fabaceae.[2] It include...

 

 

2001 studio album by Uri CaineSolitaireStudio album by Uri CaineReleased2001RecordedNovember 22 & 23, 2000Schloss Elmau, GermanyGenreJazzLength68:16LabelWinter & Winter 910 075-2ProducerStefan WinterUri Caine chronology Bedrock 3(2001) Solitaire(2001) Rio(2001) Solitaire is a 2001 solo album by pianist Uri Caine. It was released on the Winter & Winter label.[1] Reception Professional ratingsReview scoresSourceRatingAllMusic[2]The Penguin Guide to Jazz[3...

Hong Kong cinematographer Peter PauPeter Pau in 2005Born1952 (age 71–72)Hong Kong, ChinaChinese nameTraditional Chinese鮑德熹TranscriptionsStandard MandarinHanyu PinyinBào Dé XīYue: CantoneseJyutpingBaau1 Dak1 Hei1 Peter Pau Tak-Hei (Chinese: 鮑德熹, born 1952) is a Hong Kong cinematographer and film director, best known to western audiences as for his work on Crouching Tiger, Hidden Dragon, for which he won the Academy Award for Best Cinematography in 2000. One o...

 

 

Voce principale: National Basketball Association 2020-2021. NBA Playoffs 2021Il logo delle FinaliDettagli della competizioneSport Pallacanestro OrganizzatoreNBA Periodo22 maggio 2021 —22 luglio 2021 Squadre16 VerdettiTitolo East Milwaukee Bucks Titolo West Phoenix Suns Campione Milwaukee Bucks(2º titolo) MVP delle finaliGiannīs Antetokounmpo Ultimo aggiornamento dati: 21 luglio 2021 Cronologia della competizioneed. successiva →     ← ed. pre...

 

 

Ancient acrostic composed of 44 proverbs Adam clutches a child in the presence of the child-snatcher Lilith Rabbinic literatureTalmud Readers by Adolf Behrman Talmudic literature Tannaitic Mishnah Tosefta Amoraic (Gemara) Jerusalem Talmud Babylonian Talmud Later Minor Tractates Halakhic Midrash Exodus Mekhilta of Rabbi Ishmael Mekhilta of Rabbi Shimon bar Yochai Leviticus Sifra (Torat Kohanim) Numbers and Deuteronomy Sifre Sifrei Zutta on Numbers (Mekhilta le-Sefer Devarim) Aggadic Midrash Ta...

Le ballon original de la Coupe du monde 1970. Le Telstar est un ballon de football en forme d'icosaèdre tronqué, fabriqué par Adidas. Son nom vient du satellite américain Telstar 1, lancé en 1962, mais fait référence aussi à son utilisation (« star de la télé) ». C'est le ballon officiel de la Coupe du monde de 1970. D'autres versions du Telstar furent utilisées ultérieurement, comme le Telstar Durlast de la Coupe du monde de 1974. Le Telstar est le ballon de football ...

 

 

King of Sweden from 1771 to 1792 For the opera by Daniel Auber, see Gustave III, ou Le bal masqué. For the unfinished Giuseppe Verdi opera, see Gustavo III (Verdi). Gustav IIIPortrait by Lorens Pasch, 1777King of SwedenReign12 February 1771 – 29 March 1792Coronation29 May 1772PredecessorAdolf FrederickSuccessorGustav IV AdolfBorn24 January 1746Stockholm, SwedenDied29 March 1792(1792-03-29) (aged 46)Stockholm Palace, Stockholm, SwedenBurial14 May 1792Riddarholm ChurchSpouse Sophia Magd...